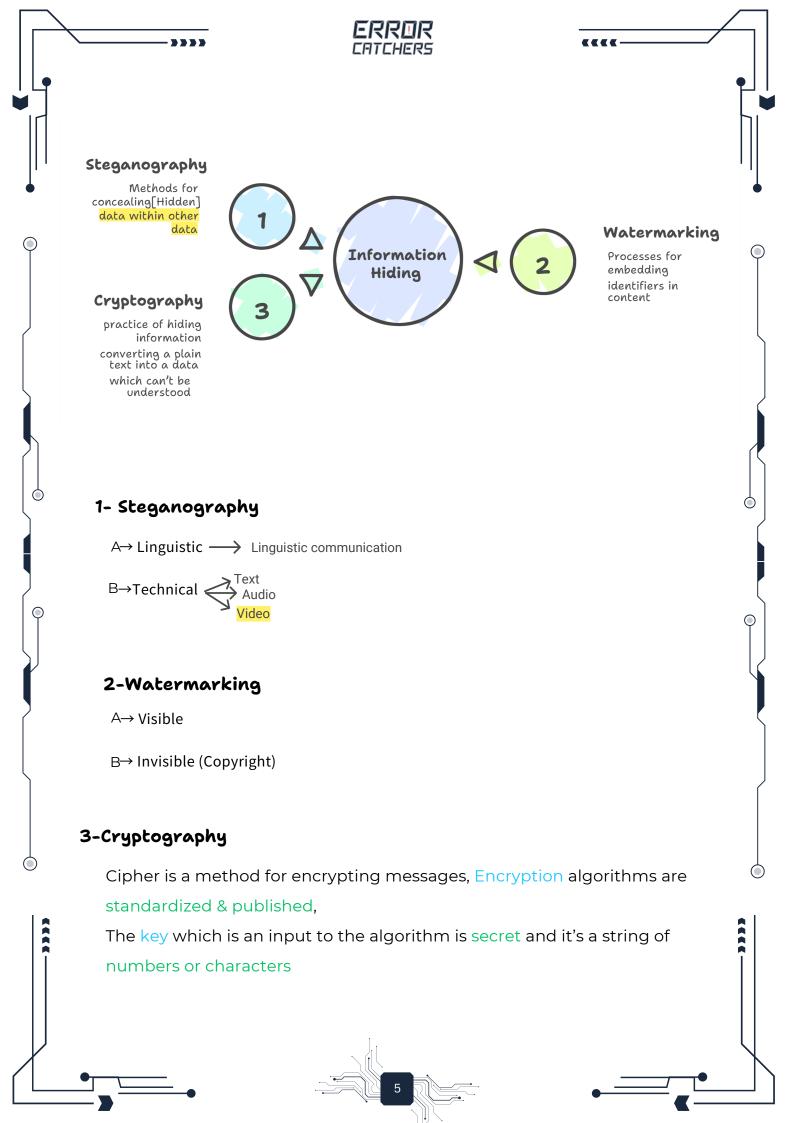


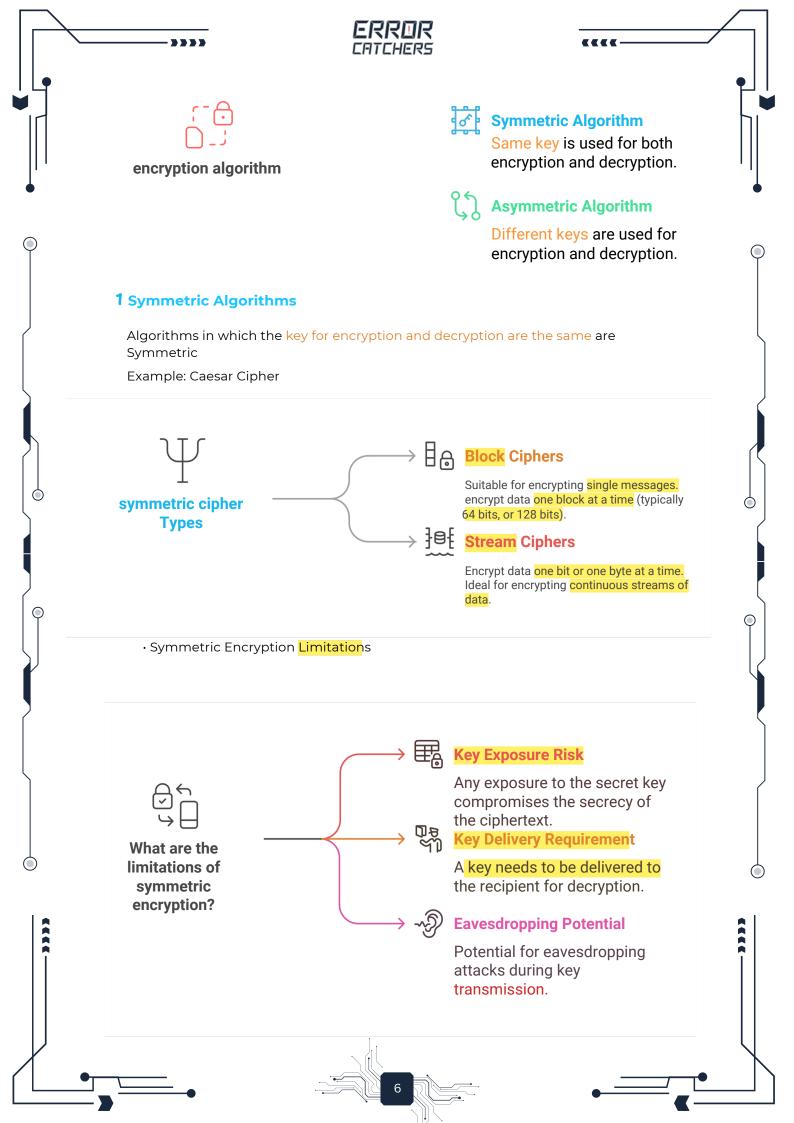
Computer Security: The protection to an automated information system in order to attain the applicable objectives of preserving the integrity, availability, and confidentiality of information system resources (hardware, software, etc.]

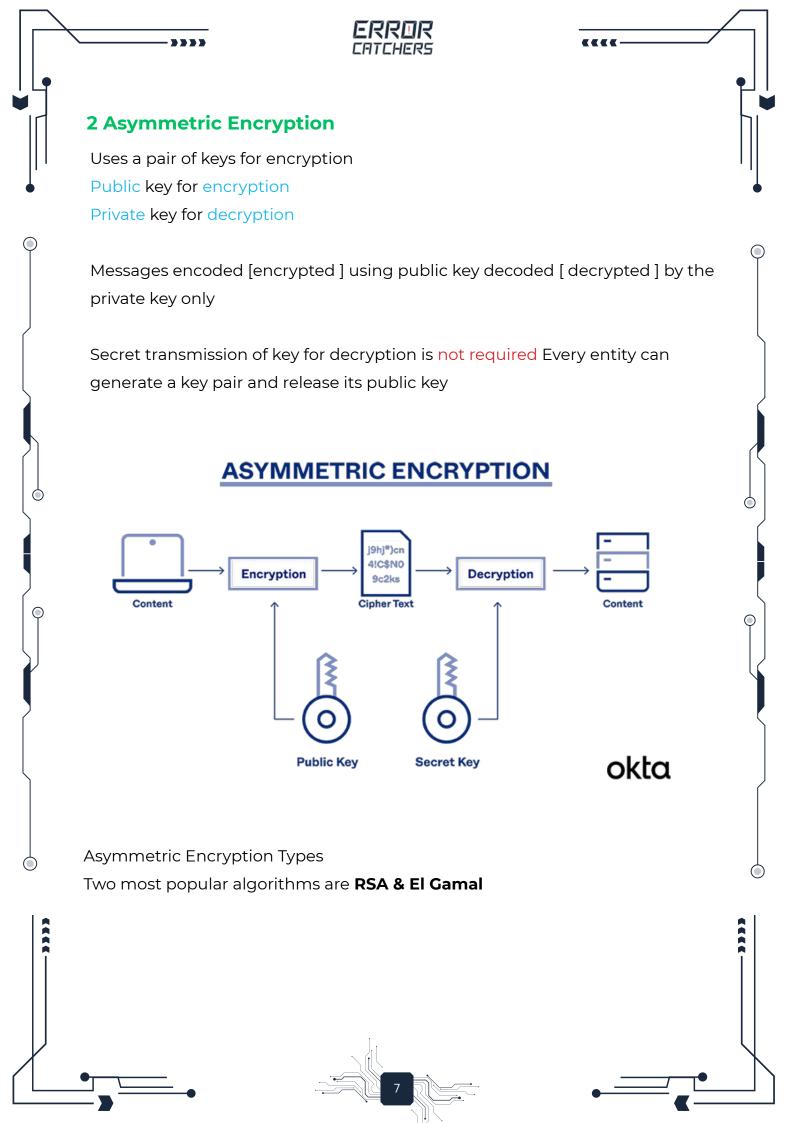
Information security, (InfoSec): is the practice of preventing unauthorized access, use, disclosure, of information. The information or data may take any form, electronic or physical.

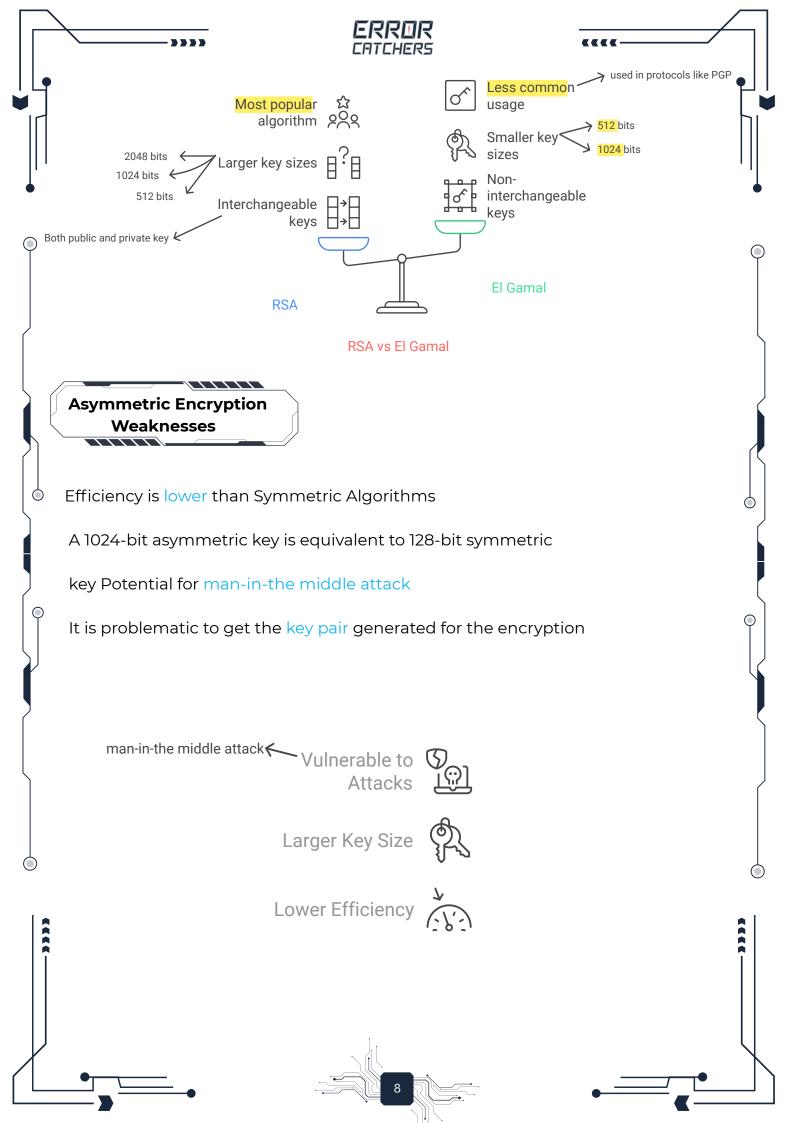
1- Cryptography

also known as "Kryptos" it's Greek word means "Hidden Secrets". practice of hiding information converting a plain text into a data which can't be understood and to be able to convert it again to the original plain text.

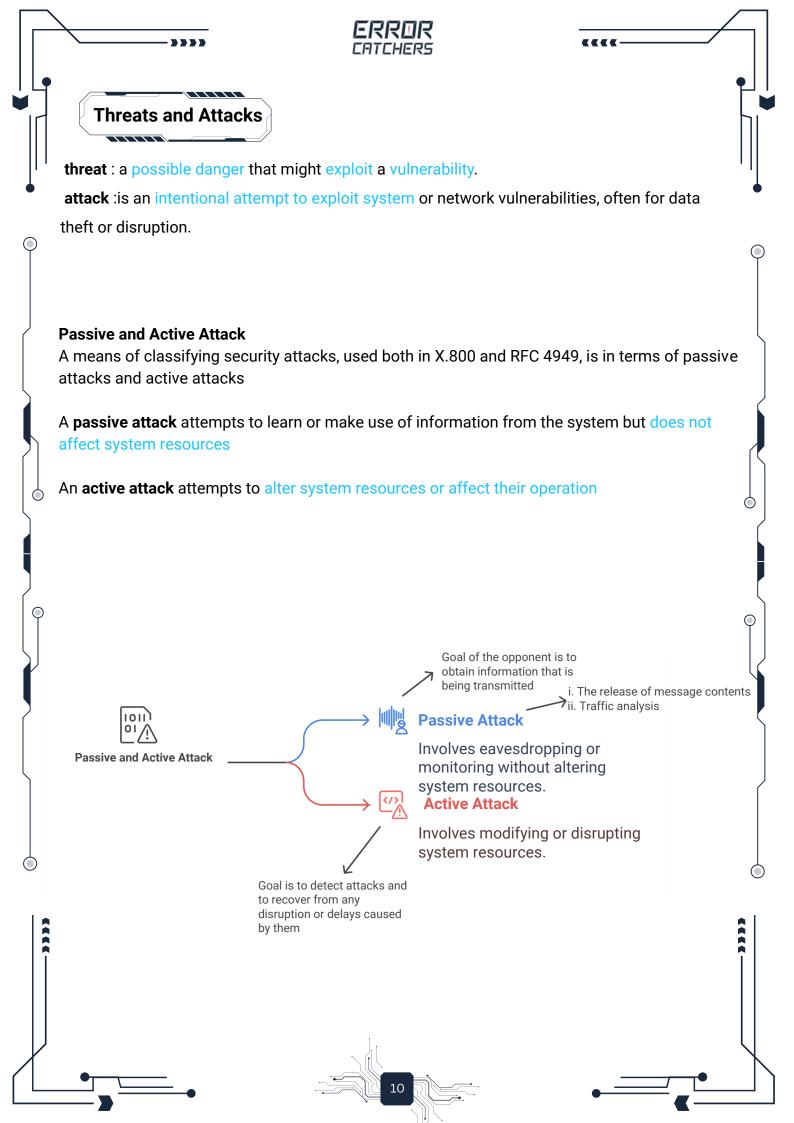

2- Steganography

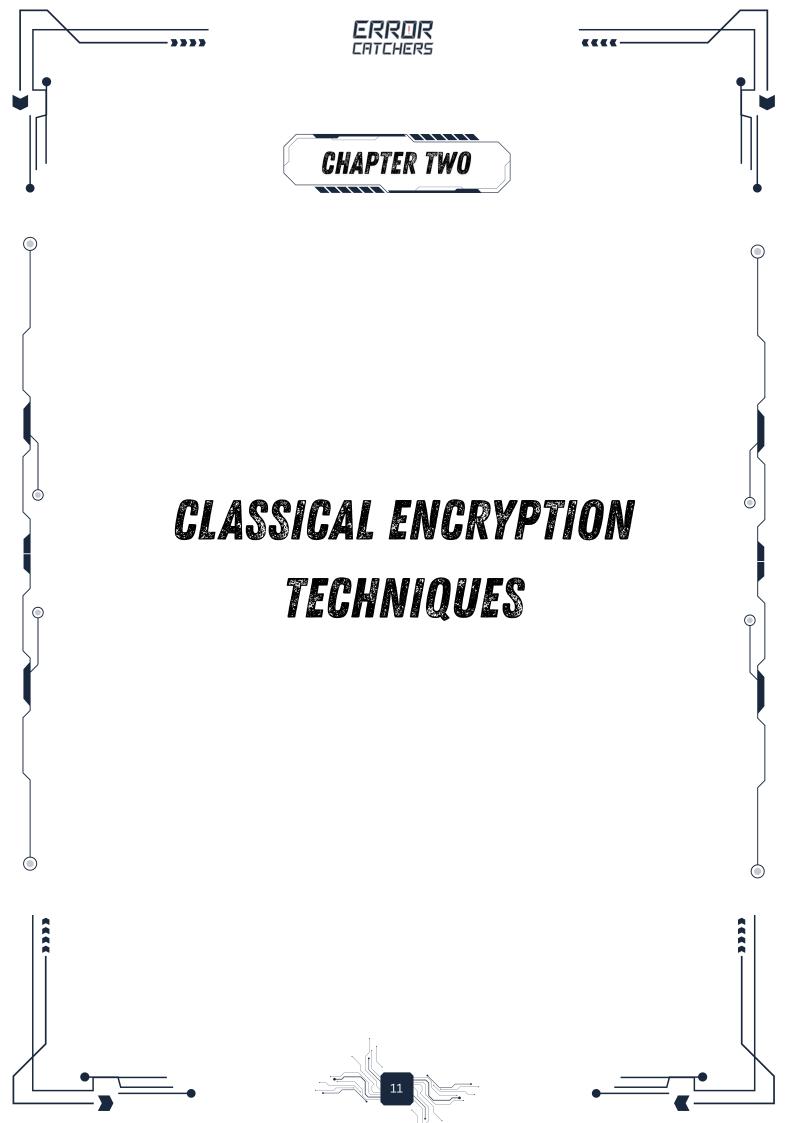

also known as "STEGANOS GRAPHIA" it's Greek word means "Covered Writing" is an encryption technique that can be used along with cryptography as an extrasecure method in which to protect data.

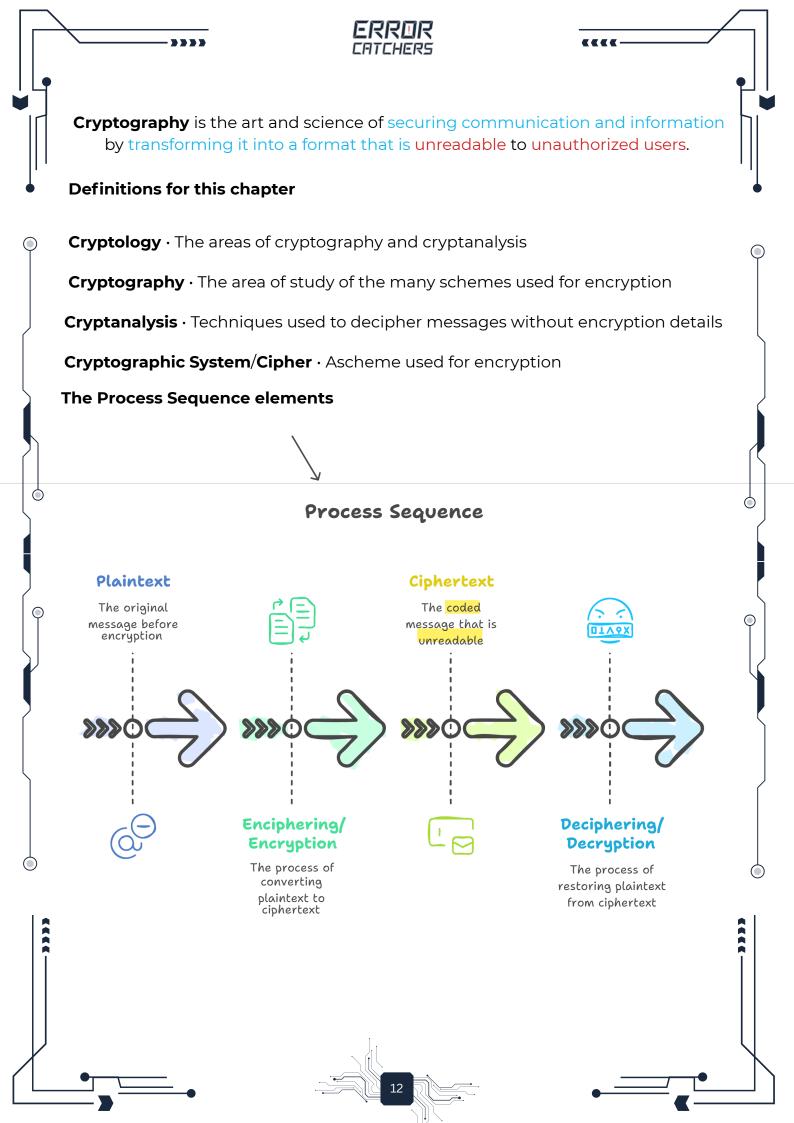

3- Watermark


non digital is a visible image or pattern in paper, appearing in varying shades when viewed with transmitted or reflected light, caused by differences in paper thickness.

digital is an embedded signal or pattern in digital files that contains information identifying the copyright owner, creator, or authorized user.







Introduction to Cryptography

We can think of cryptography as an age-old secret language, or as an invisible shield that has grown stronger over time.

How Does It Work?

It's much like leaning in to whisper a secret to your best friend; no one else can understand what you said because there's an extra layer, which we can call the "encryption method."

Why can only your friend understand the message?

Because they have what it takes to decode it: "the secret key."

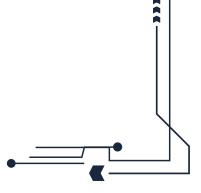
But what's the problem with this simple method?

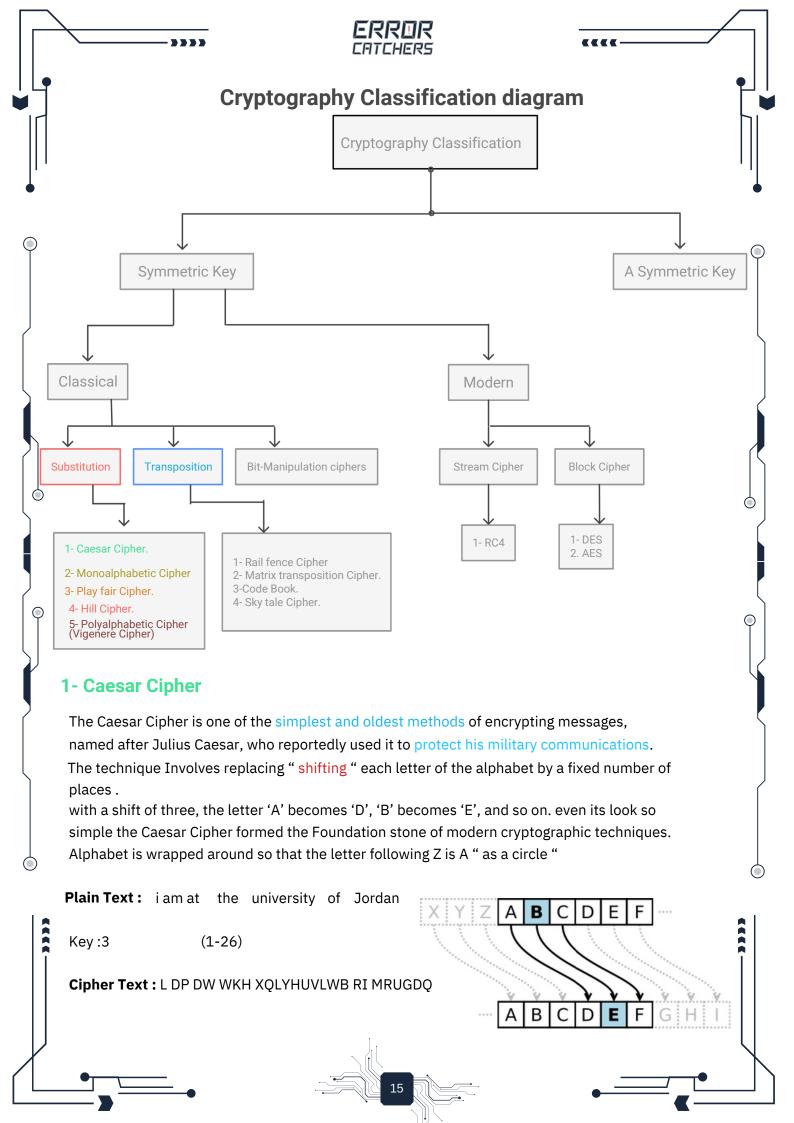
It's not a very secure way to share a secret. Imagine that another person gets ahold of the "secret key." They could easily understand the message. We can think of this person as a third party who has everything they need to decrypt and read the message.

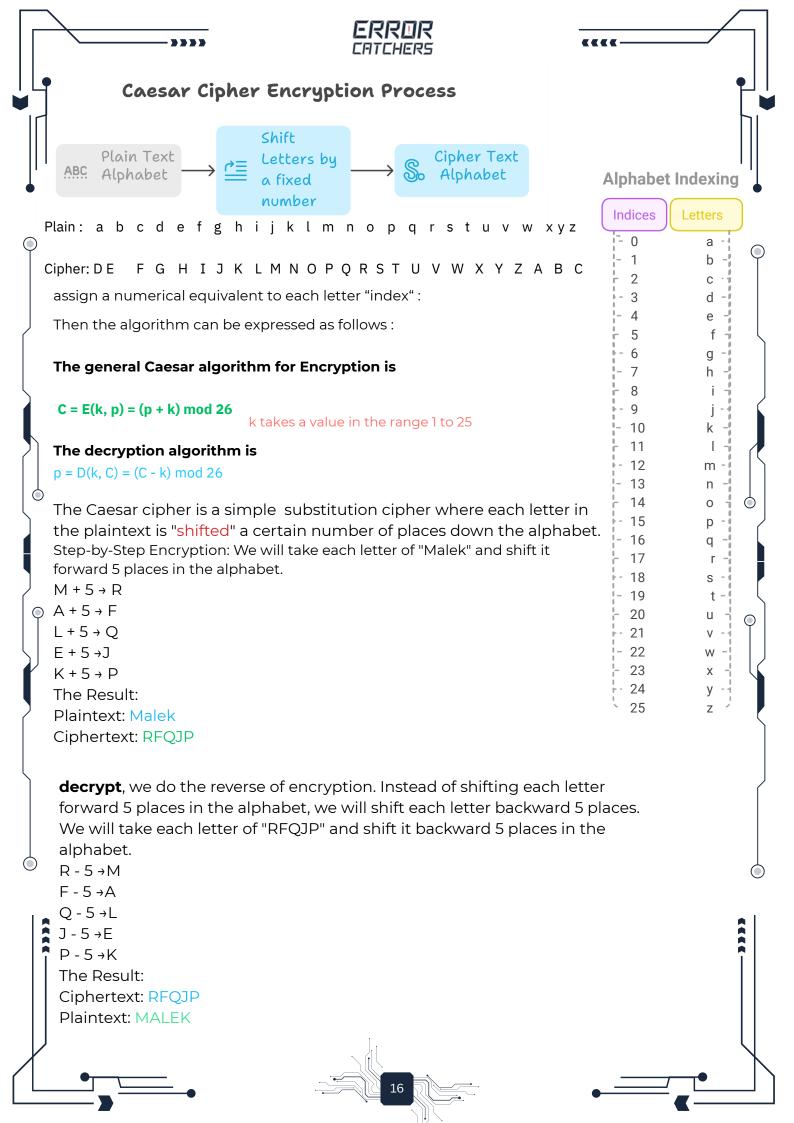
This is where modern cryptography comes in. It allows your phone to whisper securely to your bank's computer. Whenever you send an encrypted text message or read your email, far more complex mathematical operations are happening under the hood.

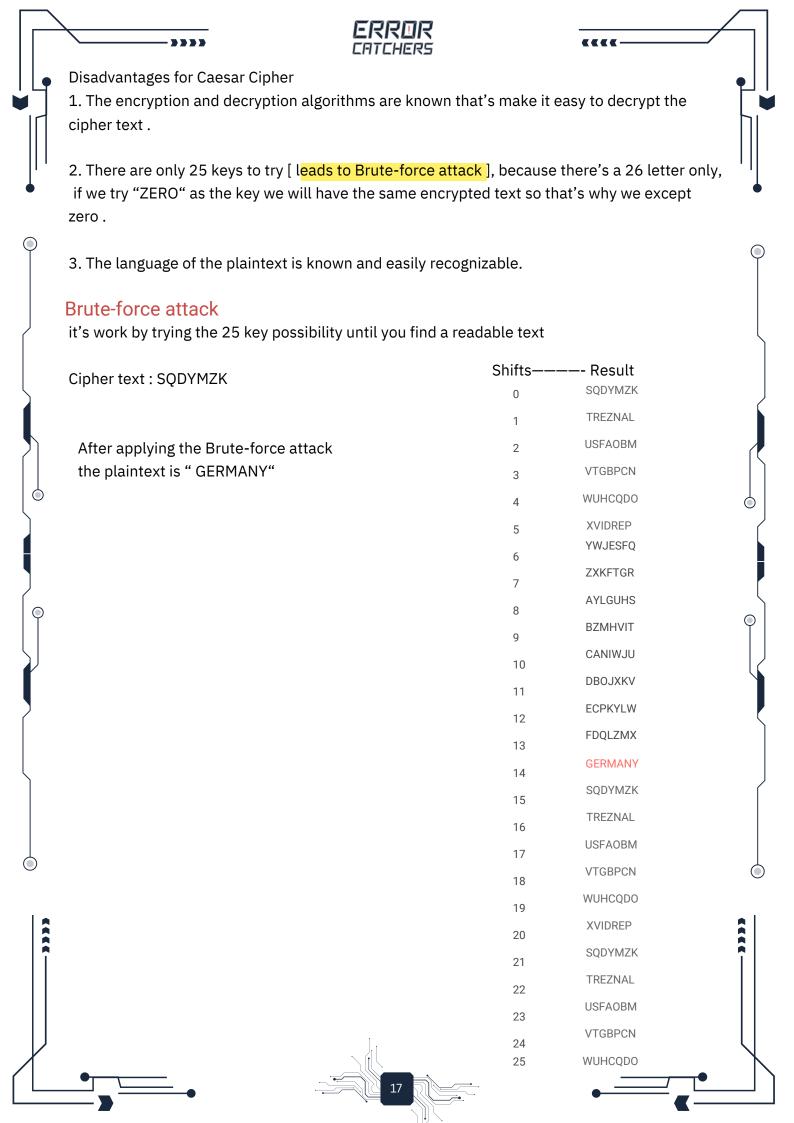
Cryptography has been used for centuries, starting from basic ciphers and evolving into the complex algorithms that scramble sensitive data in modern computing. It forms a crucial part of many fields, including finance, the military, and private communications.

Introduction to Cryptography


1933-1945: The Military Use of Cryptography


During WWII, the German military used the **"Enigma machine"** for secure communication. This machine encrypted messages using a combination of mechanical and electrical systems.


The Enigma's Basic Mechanism: It was a brilliant yet simple electromechanical system that worked as follows:


- 1.**Input**: A user presses a letter on the keyboard.
- 2.**Processing**: A series of rotors scrambles the electrical signal. Each time a key is pressed, the rotors shift, producing a different encryption pattern for each letter.
- 3. **Output**: A light bulb corresponding to the new letter lights up. This lit-up letter is the encrypted output.

2- Monoalphabetic Cipher

Monoalphabetic Cipher is a part of the substitution technique in which a single cipher alphabet is used per message. Monoalphabetic Cipher eliminates the brute-force techniques for cryptanalysis.

In Monoalphabetic cipher, the mapping is done randomly and the difference between the letters is not uniform.

Permutation

Of a finite set of elements S is an ordered sequence of all the elements of S, with each element appearing exactly once.

If the "cipher" line can be any permutation of the 26 alphabetic characters, then there are 26! or greater than 4×10^{26} possible keys.

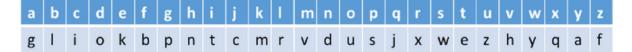
Simply, a permutation is every possible way to arrange a set of items in a different order.

In other words, if you have a number of distinct [unique] items, each arrangement of those items is a "permutation."

For Example:

Let's say you have 3 letters: A, B, C

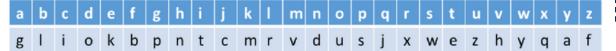
- A C B
- BAC
- BCA
- CAB
- CBA


those are permutation

Encryption

replace the letters with the corresponding in the second row

Key


Plain: Cyber Security
Cipher: iALKX WKiZXTEA

Decryption

replace the letters with the corresponding in the first row. "read from the second row and replace it with the letter in the first row"

Key

Cipher: iALKX WKiZXTEA

Plain: Cyber Security

- 1- Easy to break because they reflect the frequency data of the original alphabet
- 2- exposure to guessing attack using the English letter frequency of occurrence of letters.

Diagram

Two-letter combination Most common is th

Trigram

Three-letter combination Most frequent is the (the)

A Countermeasure is to provide multiple substitutes (homophones) for a single letter

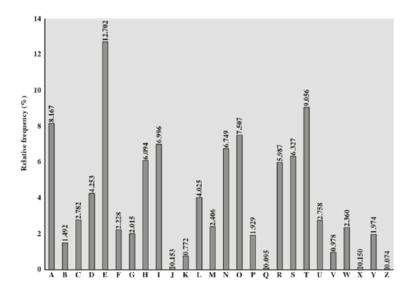
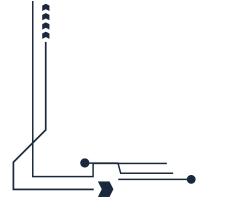
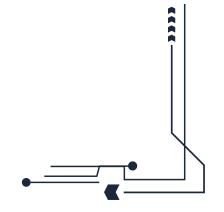




Figure 3.5 Relative Frequency of Letters in English Text

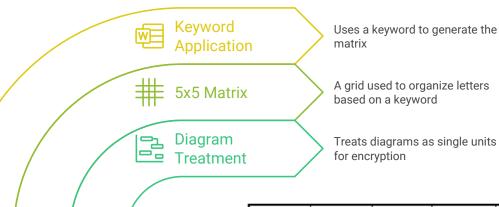
3- Play fair Cipher

Best-known multiple-letter encryption cipher

Treats diagrams in the plaintext as single units and translates these units into ciphertext

diagrams

 5×5 matrix of letters constructed using a keyword (Ex:


Hello)

Invented by British scientist Sir Charles Wheatstone in 1854

Used as the standard field system by the British Army in World War I and the U.S. Army and

other Allied forces during World

War II

N R C H Y В D E F K G IJ L Ρ Q S T W Х Z

Steps:

Ex: The Keyword [MONARCHY]:


Fill the matrix with the keyword and complete filling the matrix with all letters starting from A to Z but don't write the letters again .

if you see after the last letter of the keyword we typed B why not A?

because we already typed A before.

and we should but the [I/J] together why?

because we have a 5×5 Matrix that's take only 25 letter.

4- Hill Cipher

Developed by Lester Hill in 1929

Strength is that it completely hides single-letter frequencies

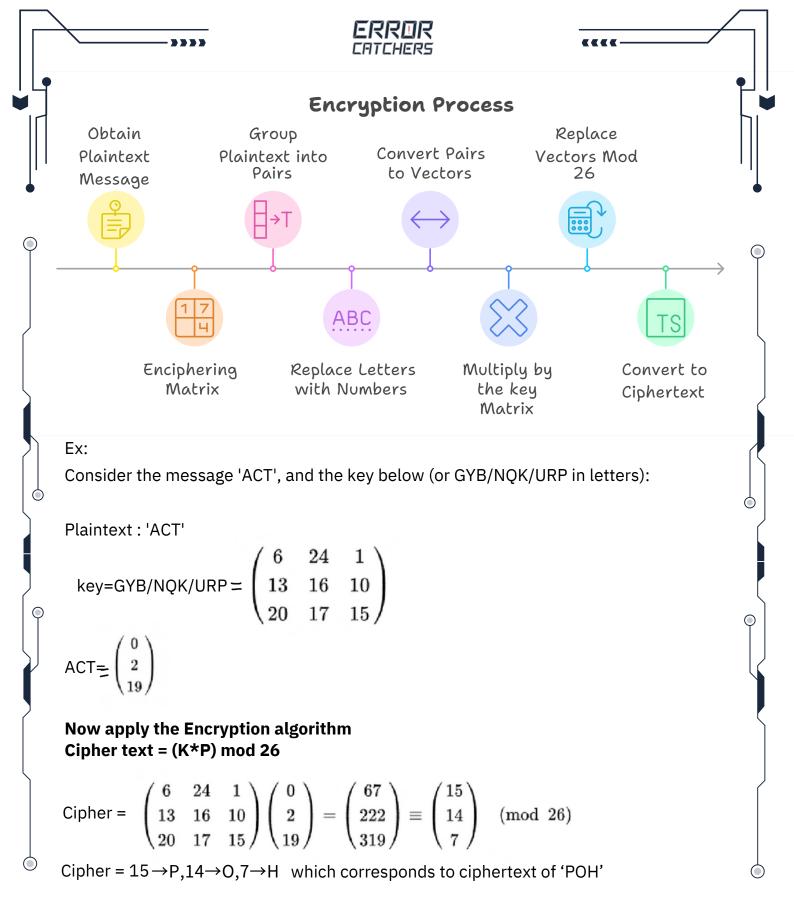
The use of a larger matrix hides more frequency information

A 3 x 3 Hill cipher hides not only single-letter but also two-letter frequency information Strong against a ciphertext-only attack but easily broken with a known plaintext attack

Encryption:

- 1. Obtain a plaintext message to encode in Standard English with no punctuation.
- 2. Create an enciphering matrix.
- a. Form a square 2x2 or 3x3 matrix with nonnegative integers each less than 26.
- b. Check that its determinant does NOT factor by 2 or 13. If this is so, return to Step a
- 3. Group the plaintext into pairs. If you have an odd number of letters, repeat the last letter.
- 4. Replace each letter by the number corresponding to its position in the alphabet i.e. A=0, B=1, C=2...Z=25.
- 5. Convert each pair of letters into plaintext vectors.
- 6. Multiply the enciphering matrix by each plaintext vector.
- 7. Replace each new vector by its residue modulo 26 if possible
- 8. Convert each entry in the cipher text vector into its corresponding position in the alphabet.
- 9. Align the letters in a single line without spaces. The message is now enciphered.

Cipher text = $K^*P \mod 26$


Where k is a key matrix that should not a singular matrix and P= plaintext

Encryption

Cipher text = (K*P) mod 26

Determinant	1	3	5	7	9	11	15	17	19	21	23	25
Reciprocal Modulo 26	1	9	21	15	3	19	7	23	11	5	17	25

Try to encrypt: The Key: 3 10 20

Notwork: 20 9 17

Network: 20 9 17

sara: Cat:

Note: the matrix is 3×3 so , the plain text should be chopped each 3 letters together.

Decryption:

To decrypt a ciphertext encoded using the Hill Cipher, we must find the inverse matrix.

Once we have the inverse matrix, the process is the same as encrypting. That is we multiply the inverse key matrix by the column vectors that the ciphertext is split into, take the results

modulo the length of the alphabet, and finally convert the numbers back to letters.

Plain text = $(K^{-1}*C)$ mod 26

finding the inverse key matrix

Example 2 × 2 Matrix:

The keyword hill and our ciphertext is "APADJ TFTWLFJ". We start by writing out the keyword as a matrix and converting this into a key matrix as for encryption. Now we must convert this to the inverse key matrix, for which there are several steps.

$$\begin{pmatrix} H & I \\ L & L \end{pmatrix} = \begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix}$$

Step 1 - Find the Multiplicative Inverse of the DeterminantThe determinant is a number that relates directly to the entries of the matrix.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \mod 26$$

Note: when calculating the mod if the value negative we need to add 26 to the negative values to get a number between 0 and 25.

$$\begin{vmatrix} 7 & 8 \\ 11 & 11 \end{vmatrix} = 7 \times 11 - 8 \times 11 = -11 = 15 \mod 26 = 15$$

Determinant	1	3	5	7	9	11	15	17	19	21	23	25
Reciprocal Modulo 26	1	9	21	15	3	19	7	23	11	5	17	25

Determinant(K)=15 = Inverse= 7

So the multiplicative inverse of the determinant modulo 26 is 7. We need this number later.

Step 2 - Find the Adjugate [adjoint] Matrix

The adjoint matrix is a matrix of the same size as the original. For a 2 x 2 matrix, it is just moving the elements to different positions and changing a couple of signs. Algebraically this is given below.

$$adj\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

once we have these values we will need to take each of them modulo 26 . we get the matrix below.

$$adj\begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix} = \begin{pmatrix} 11 & -8 \\ -11 & 7 \end{pmatrix} = \begin{pmatrix} 11 & 18 \\ 15 & 7 \end{pmatrix}$$

Step 3 - Multiply the Multiplicative Inverse of the Determinant by the adjoint Matrixwe now multiply the inverse determinant from step 1 by each of the elements of the adjoint matrix from step 2. Then we take each of these answers modulo 26.

$$7 \times \begin{pmatrix} 11 & 18 \\ 15 & 7 \end{pmatrix} = \begin{pmatrix} 77 & 126 \\ 105 & 49 \end{pmatrix} = \begin{pmatrix} 25 & 22 \\ 1 & 23 \end{pmatrix} \mod 26$$

$$K^{-1} = \begin{pmatrix} 25 & 22 \\ 1 & 23 \end{pmatrix}$$

After finding the inverse key matrix, we have to convert the ciphertext into column vectors and multiply the inverse matrix by each column vector in turn, take the results modulo 26 and convert these back into letters to get the plaintext.

ciphertext is "APADJ TFTWLFJ"

$$\binom{25}{1} \quad \frac{22}{23} \binom{A}{P} = \binom{25}{1} \quad \frac{22}{13} \binom{0}{15} \qquad \binom{25}{1} \quad \frac{22}{13} \binom{A}{D} = \binom{25}{1} \quad \frac{22}{23} \binom{0}{3}$$

$$= \binom{25 \times 0 + 22 \times 15}{1 \times 0 + 23 \times 15}) \qquad = \binom{25 \times 0 + 22 \times 3}{1 \times 0 + 23 \times 3}$$

$$= \binom{330}{345} \qquad = \binom{66}{69}$$

$$= \binom{18}{7} \mod 26 \qquad = \binom{14}{17} \mod 26$$

$$= \binom{o}{r}$$

$$\binom{25}{1} \ \frac{22}{23} \binom{J}{T} = \binom{25}{1} \ \frac{22}{23} \binom{9}{19} \qquad \qquad \binom{25}{1} \ \frac{22}{23} \binom{F}{T} = \binom{25}{1} \ \frac{22}{23} \binom{5}{19}$$

$$= \binom{25 \times 9 + 22 \times 19}{1 \times 9 + 23 \times 19} \qquad \qquad = \binom{25 \times 5 + 22 \times 19}{1 \times 5 + 23 \times 19}$$

$$= \binom{643}{446} \qquad \qquad = \binom{543}{442}$$

$$= \binom{19}{4} \mod 26 \qquad \qquad = \binom{23}{0} \mod 26$$

$$= \binom{t}{e} \qquad \qquad = \binom{x}{a}$$

$$\binom{25}{1} \quad \frac{22}{23} \binom{W}{L} = \binom{25}{1} \quad \frac{22}{23} \binom{22}{11}$$

$$= \binom{25 \times 22 + 22 \times 11}{1 \times 22 + 23 \times 11}$$

$$= \binom{792}{275}$$

$$= \binom{12}{15} \mod 26$$

$$= \binom{m}{p}$$

$$\binom{25}{1} \quad \frac{22}{23} \binom{F}{J} = \binom{25}{1} \quad \frac{22}{23} \binom{5}{9}$$

$$= \binom{25 \times 5 + 22 \times 9}{1 \times 5 + 23 \times 9}$$

$$= \binom{323}{212}$$

$$= \binom{11}{4} \mod 26$$

$$= \binom{l}{e}$$

The Plain Text Will Be "short example"

3 × 3 Matrix:

Step 1 - Find the Multiplicative Inverse of the Determinant

For a 3 x 3 matrix it is found by multiplying the top left entry by the determinant of the 2 x 2 matrix formed by the entries that are not in the same row or column as that entry ignore [b,c andd,g], then multiply b with d and i minus g and f [ignore [a,c] and [e,h] ignore [a,b] and [f,i] etc.

This is shown more clearly in the algebraic version below.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$= a(ei - fh) \cdot b(di - fg) \cdot c(dh - eg)$$

Once we have calculated this value, we take it modulo 26.

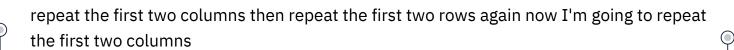
Example:

ciphertext message "SYICHOLER" using the keyword alphabet

$$\begin{pmatrix} A & L & P \\ H & A & B \\ E & T & A \end{pmatrix} = \begin{pmatrix} 0 & 11 & 15 \\ 7 & 0 & 1 \\ 4 & 19 & 0 \end{pmatrix}$$

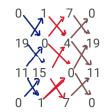
Step 1 - Find the Multiplicative Inverse of the Determinant

$$\begin{vmatrix} 0 & 11 & 15 \\ 7 & 0 & 1 \\ 4 & 19 & 0 \end{vmatrix} = 0 \begin{vmatrix} 0 & 1 \\ 19 & 0 \end{vmatrix} - 11 \begin{vmatrix} 7 & 1 \\ 4 & 0 \end{vmatrix} + 15 \begin{vmatrix} 7 & 0 \\ 4 & 19 \end{vmatrix}$$
$$= 0(0 - 19) - 11(0 - 4) + 15(133 - 0)$$
$$= 0 + 44 + 1995$$
$$= 2039$$
$$= 11 \mod 26$$


Determinant	1	3	5	7	9	11	15	17	19	21	23	25
Reciprocal Modulo 26	1	9	21	15	3	19	7	23	11	5	17	25

Determinant (K) = 11 = Inverse = 19

Step 2 - Find the adjoint Matrix


$$\begin{bmatrix} 0 & 11 & 15 \\ 7 & 0 & 1 \\ 4 & 19 & 0 \end{bmatrix}$$

here I have completed repeating the first two columns

now let's repeat the first two rows so these two are the first two rows we have after repeat the first two columns now we will have a 5×5 matrix

then just ignore the first row and the first Column now we will have a 4×4 matrix

then to get the value of first row first column multiply $0 \times 0 - 19 \times 1$

to get the value of first row 2nd column multiply 19 × 15 - 11 × 0

then complete all steps like 2×2 matrix

5- Polyalphabetic Cipher (Vigenere Cipher)

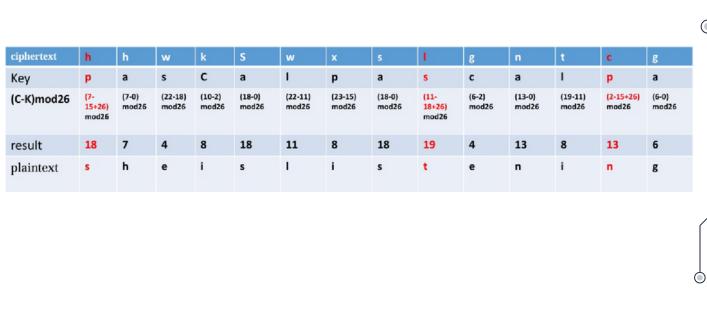
The Polyalphabetic cipher is an extension of monoalphabetic ciphers since the encryption cycles through the plaintext with greater than one substitution alphabet. An example is the Vigenère cipher, created by Blaise de Vigenère in the 16th century. It encrypts messages through a series of Caesar ciphers where each plaintext letter is shifted over a repeated secret key phrase. The cipher uses shifts of 1 to 26 and employs a number of mixed alphabets, making it more secure than simple monoalphabetic encryption. While used during the American Civil War and once thought to be unbreakable, it has since been demonstrated to be vulnerable to modern cryptanalysis.

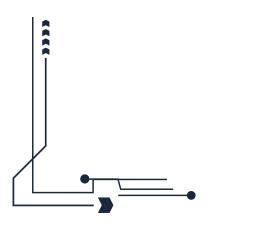
а	b	C	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	S	t	u	v	w	Х	У	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

EncryptionThe plaintext(P) and key(K) are added modulo 26.Ei = (P i + K i) mod 26

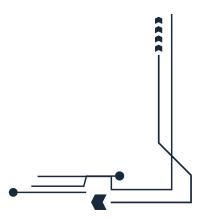
Example:

find the cipher text for the plaintext "she is listening" using the word "PASCAL" as the key Ciphertext :hhwkswxslgntcg


Plaintext	S	h	е	i	s	1	i	s	t	е	n	i e	n	g
Key	р	а	s	С	а	1	р	a	s	с	а	1	р	а
(P+K)mod26	(18+15) mod26	(7+0) mod26	(4+18) mod26	(8+2) mod26	(18+0) mod26	(11+11) mod26	(8+15) mod26	(18+0) mod26	(19+18) mod26	(4+2) mod26	(13+0) mod26	(8+11) mod26	(13+15) mod26	(6+0) mod26
result	7	7	22	10	18	22	23	18	11	6	13	19	2	6
ciphertext	h	h	w	k	S	w	x	s	1	g	n	t	c	g


Try to encrypt:

"[your name] wants to go to the University" the key 'Cryptography'



2. 2 Transposition

Transposition Ciphers are ciphers in which the plaintext message is rearranged by some means agree upon by the sender and receiver.

1- Rail fence Cipher

Simplest transposition cipher Plaintext is written down as a sequence of diagonals and then read off as a sequence of rows

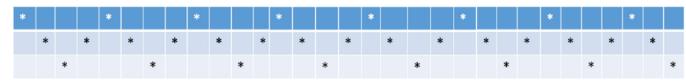
Example:

the message "meet me after the Cryptography class" with a rail fence of depth 3, we would write:

M				m				t				h				у				g				h				а		
	е		t		е		f		е		t		е		r		р		0		r		р		у		1		s	
		е				а				r				С				t				а				С				s

now read the table row by row

Encrypted message is: mmthyghaetefeterporpylsearctacs


For Decryption

Create an empty table depends on the depth [KEY] and number of characters. Rows = key, Columns = length of the ciphertext.

Mark the zig-zag path: Place a marker (*) in the grid where the letters should go, moving down and then up diagonally. $\searrow \nearrow \searrow \nearrow \searrow \nearrow$

Fill the grid: Place the ciphertext letters onto the markers, filling each row completely from left to right before moving to the next row.

Read the plaintext: Read the letters from the grid by following the zig-zag path from the top-left corner.

after filling the Encrypted message : mmthyghaetefeterporpylsearctacs

М				m				t				h				у				g				h				а		
	е		t		е		f		е		t		е		r		р		0		r		р		у		I		s	
		е				а				r				С				t				а				С				S

The message will be "meet me after the Cryptography class"

2- The Route Cipher

the key is which route to follow when reading the ciphertext from the block created with the plaintext. The plaintext is written in a grid, and then read off following the route chosen First we write the plaintext in a block of reasonable size for the plaintext.

Part of your key is the size of this grid, so you need to decide on either a number of columns or number of rows in the grid before starting. Once the plaintext is written out in the grid, you use the Route assigned.

- 1. From top-right corner clockwise to the center
- 2. From top-right corner counterclockwise to the center

Route Cipher Process

Write Plaintext in

Grid

Select Reading Route clockwise /counterclockwise

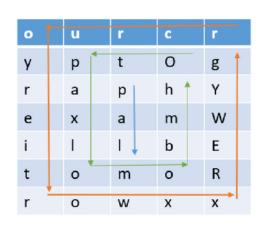
Read Ciphertext

Determine Grid Size

Encryption

The Key size means the number of columns

Example:


Plain text: our cryptography exam will be tomorrow

Key size =5

1. From top-right corner clockwise to the center

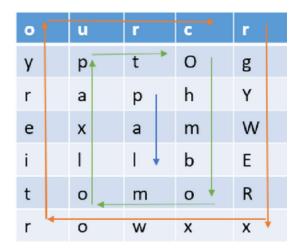
0	_	u	r		С	•	r	
у		p	t	•	О		g	
r		а	р		h		Υ	
е		х	а		m		W	
i		1	1 ,	,	b		Е	
t		0	m		0	7	R	
r	4	0	W		Х		Х	,

clockwise

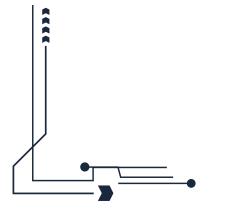
counterclockwise

The cipher text 'clockwise': rgywerxxwortieryourcohmbomolxaptpal

NOTE: you can add rows only, if there's an empty cell you can add X remember that you can't add column WHY? because the number of columns means the Key so we can't edit the key

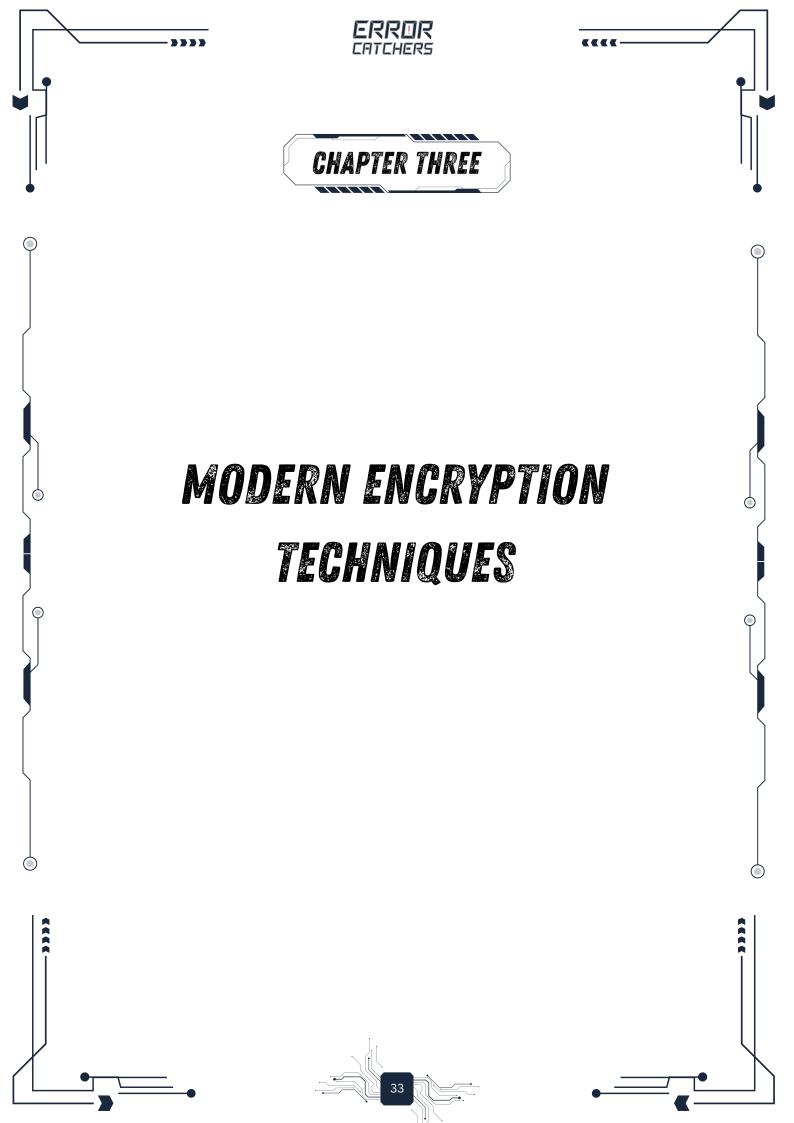

Example:

The cipher text 'clockwise': rgywerxxwortieryourcohmbomolxaptpal
The Key =5

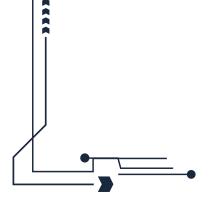

The number of rows = characters of the cipher text / key size Rows = 35 / 5 = 7 rows

then make a 7×5 matrix and then fill the matrix with the cipher text depends on the Reading Route clockwise or counterclockwise then read the matrix row by row

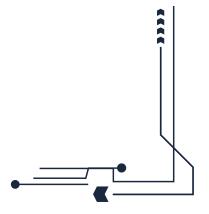
The cipher text 'clockwise'

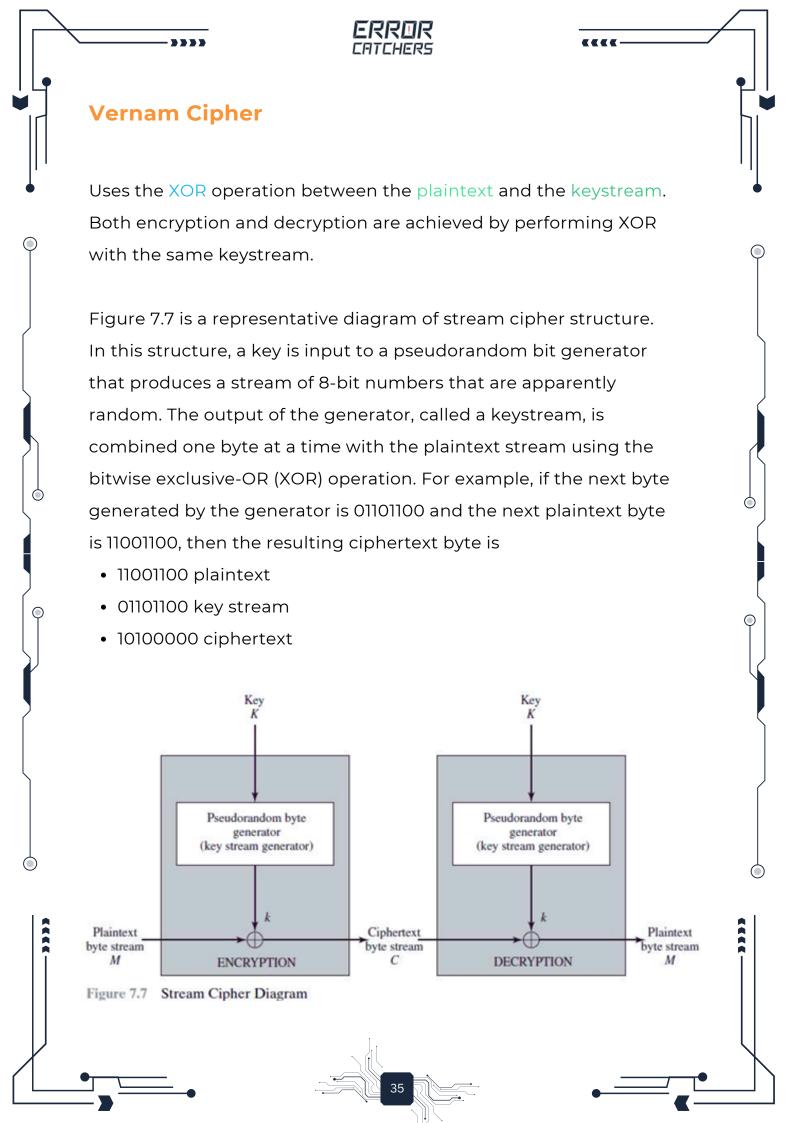


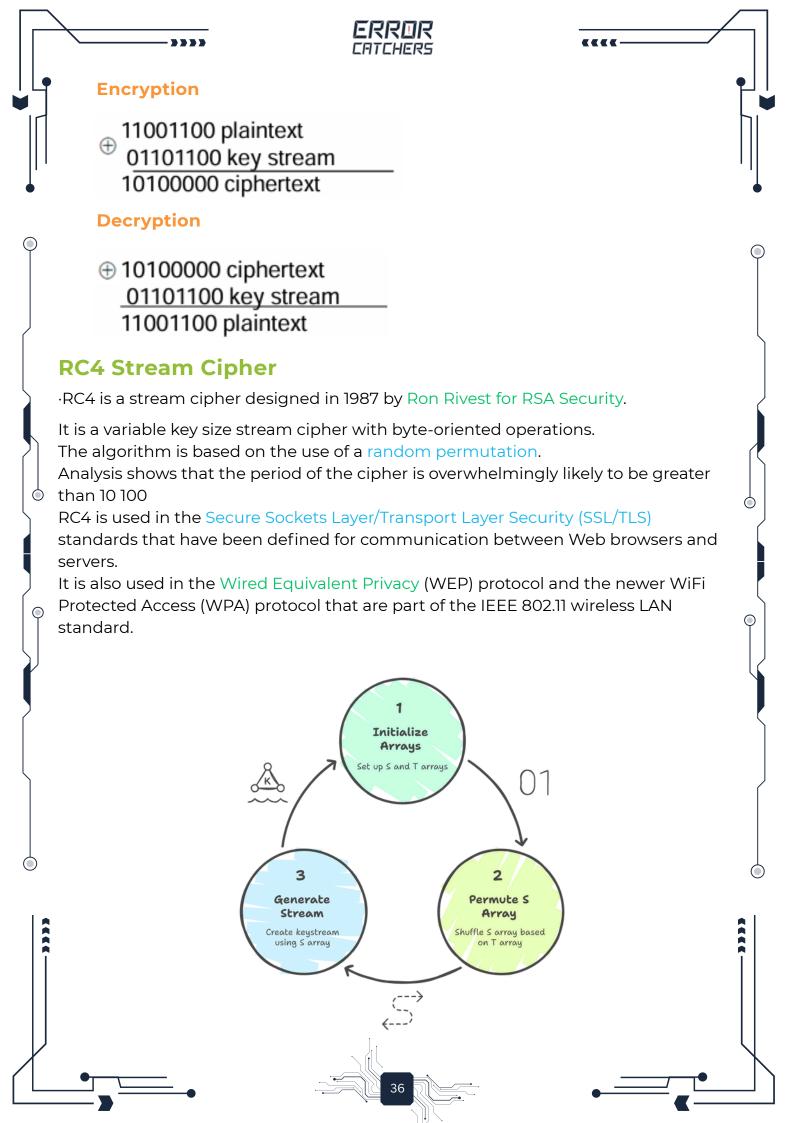
Plain text: our cryptography exam will be tomorrow



- Stream ciphers encrypt digital data in one bit or one byte at a time, as
 the plaintext is combined with a **keystream** (a series of bits/bytes),
 often using the XOR operation. This contrasts with block ciphers that
 encrypt data in fixed-length blocks of bytes.
- Ex:


Autokeyed Vigenère cipher


Vernam cipher


- One-Time Pad: An ideal stream cipher, it takes a keystream of the same size as the message consisting of truly random values and employed only once. if truly random, it's provably unbreakable mathematically.
- For **practical reasons** the bit stream generator must be implemented as an algorithmic procedure so that the cryptographic bit stream can be produced by both users The two users need only share the generating key and each can produce the keystream

1. Initialization

2.Permutation

3.Stream Generation

An array S is initialized with sequential values (commonly 0 to 255). A temporary array T is formed from a user-provided key (repeated if necessary).

A permutation of the array S is generated by iteratively swapping elements based on values derived from T.

Pseudorandom Generation Algorithm After initialization, the algorithm enters a loop where two counters (i and j) are updated. At each iteration, a swap operation is performed, and a new value is generated from S which is then XORed with the plaintext.

RC4 Example:

use 8 x 3-bits. the state vector S is 8 x 3-bits. We will operate on 3-bits of plaintext at a time since S can take the values 0 to 7, which can be represented as 3 bits. we use a 4×3 -bit key of K = $[1\ 2\ 3\ 6]$.

plaintext P = [1 2 2 3]

The first step is to generate the stream. Initialize the state vector S and temporary vector T. S is initialized so the S[i] = i, and T is initialized so it is the key K (repeated as necessary).

1. Initialization

T=[12361236]

Trace this code for i =0 to 8 do s[i]=i; t[i]=k[i mod keylen]

Note: We can say the T is the reptation of the Key

2.Permutation

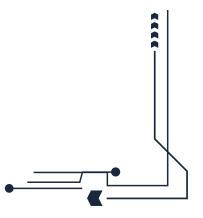
j=0;

for i = 0 to 7

do j = $(j + S[i] + T[i]) \mod 8$ Swap(S[i],S[j]);

end

Number of iteration8	S=[0 1 2 3 4 5 6 7]	Swap(S[i] , S[j])	i=0 , j=0
1	S = [1 0 2 3 4 5 6 7]	Swap (S[0],S[1])	i=0 , j=1
2	S = [1 3 2 0 4 5 6 7]	Swap(S[1],S[3])	i=1 , j=3
3	S = [2 3 1 0 4 5 6 7]	Swap(S[2],S[0])	i=2 , j=0
4	S = [2 3 1 6 4 5 0 7]	Swap(S[3],S[6])	i=3 , j=6
5	S = [2 3 1 4 6 5 0 7]	Swap(S[4],S[3])	i=4 , j=3
6	S = [2 3 5 4 6 1 0 7]	Swap(S[5],S[2])	i=5 , j=2
7	S = [2 3 5 4 6 0 1 7]	Swap(S[6],S[4])	i=6 , j=5
8	S = [2 3 7 4 6 0 1 5]	Swap(S[7],S[2])	i=7 , j=2



3.Stream Generation

```
i,j=0;
while (true) {
  i=(i+1)mod8;
  j = (j + S[i]) mod 8;
  Swap (S[i], S[j]);
  t = (S[i] + S[j]) mod 8; k = S[t]; }
The Encryption result
  plaintext stream P = [1 2 2 3]
  with key K = [1 2 3 6]
  using RC4
  result C = [4 4 2 2].
```

Number of iteration	S = [2 3 7 4 6 0 1 5]	Swap(S[i] , S[j])	i=0 , j=0	T=(S[i] + S[j]) mod 8	K=S[t]	Encryption
1	S = [2, 4, 7, 3, 6, 0, 1, 5]	Swap(S[1],S[3])	i=1, j=3	$T= (S[1] + S[3]) \mod 8 = 7$	k = S[7] = 5	first 3-bits of ciphertext is obtained by: k XOR P 5 XOR 1 = 101 XOR 001 = 100 = 4
2	S = [2, 4, 7, 3, 6, 0, 1, 5]	Swap(S[2],S[2])	i=2, j=2	$T = (S[2] + S[2]) \mod 8 = 6$	k = S[6] = 1	Second 3-bits of ciphertext are: 1 XOR 2 = 001 XOR 010 = 011 = 3
3	S = [2, 4, 7, 0, 6, 3, 1, 5]]	Swap(S[3],S[5])	i=3, j=5	t = (S[3] + S[5]) mod 8 = 3	k = S[3] = 0	Third 3-bits of ciphertext are: 0 XOR 2 = 000 XOR 010 = 010 = 2
4	S = [2, 4, 7, 6, 0, 3, 1, 5]	Swap(S[4],S[3])	i=4,j=3	t = (S[4] + S[3]) mod 8 = 3	k = S[3] = 1	Last 3-bits of ciphertext are: 1 XOR 3 = 001 XOR 011 = 010 = 2

2. Block Ciphers

A block of plaintext is treated as a whole and used to produce a ciphertext block of equal length Typically a block size of 64 or 128 bits is used As with a stream cipher, the two users share a symmetric encryption key

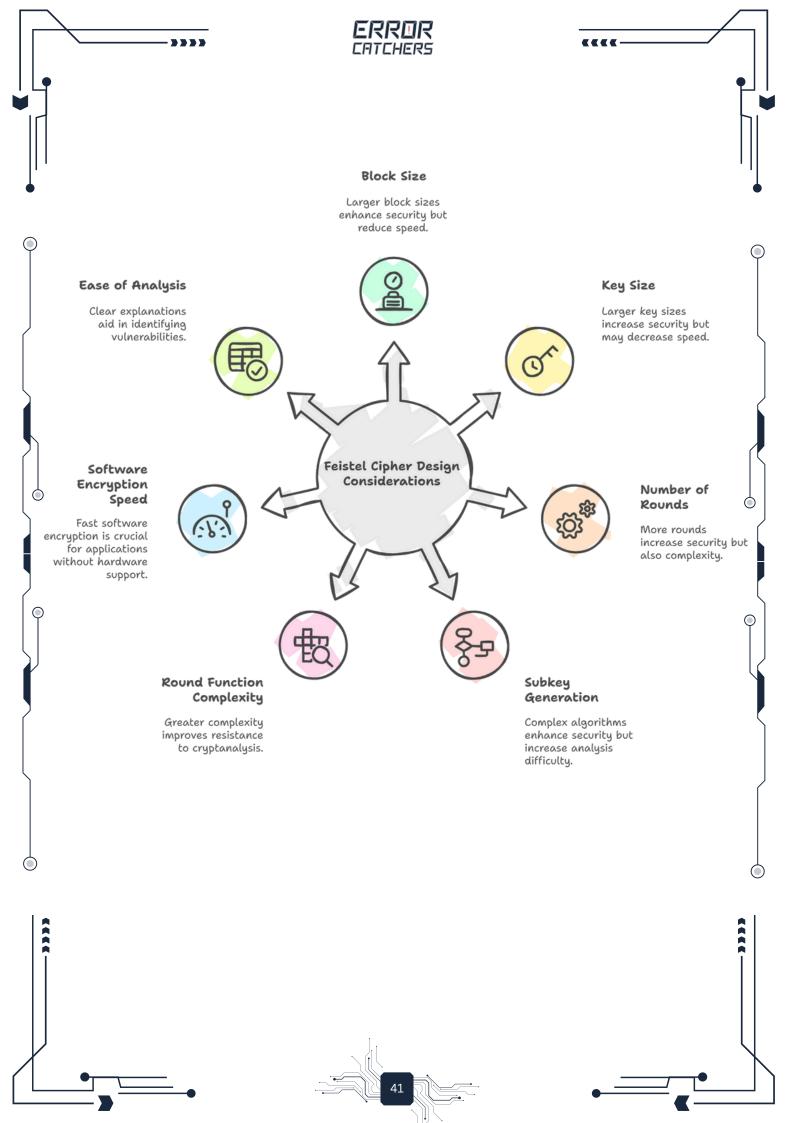
The majority of network-based symmetric cryptographic applications make use of block ciphers

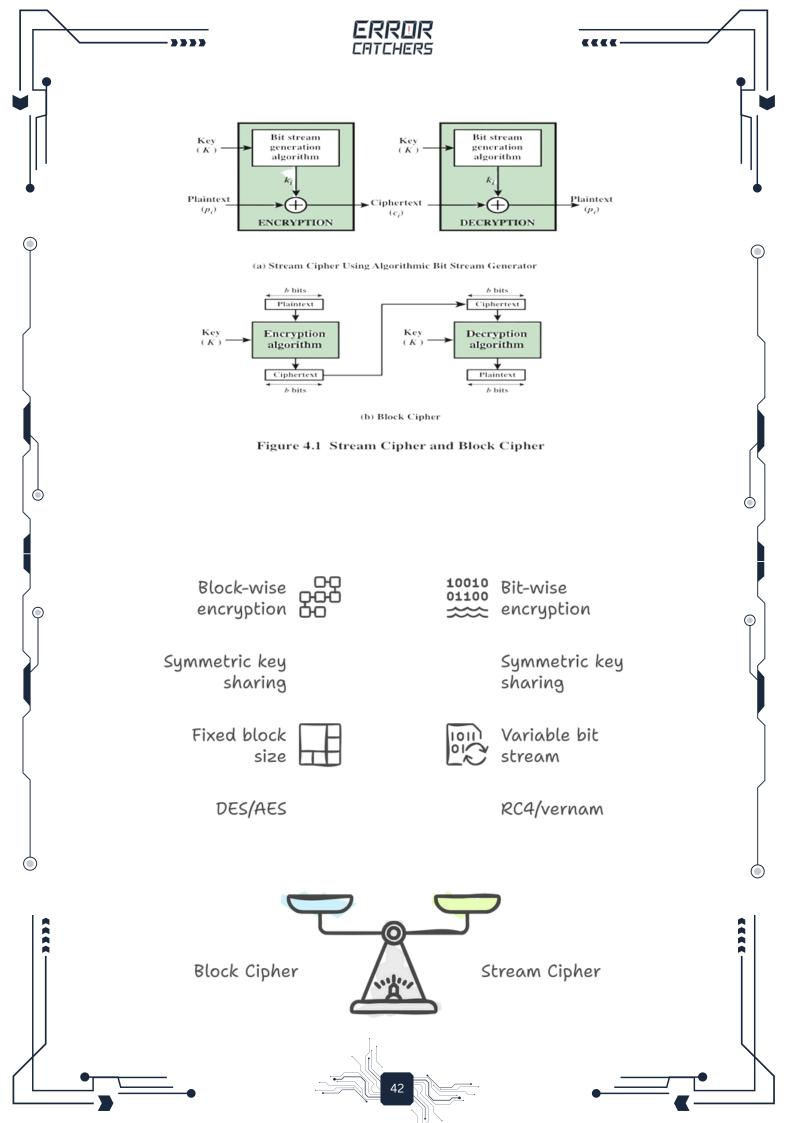
• Feistel Cipher Structure: Developed on ideas by Claude Shannon, the Feistel structure alternates between substitution and permutation operations to achieve both confusion and diffusion.

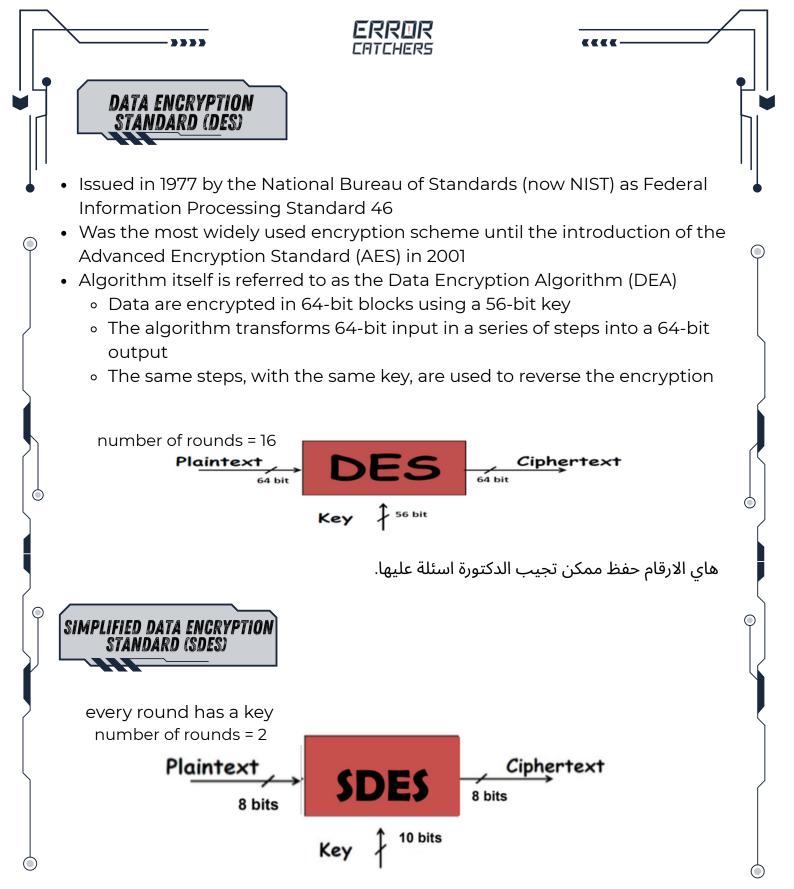
substitution

Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements.

permutation

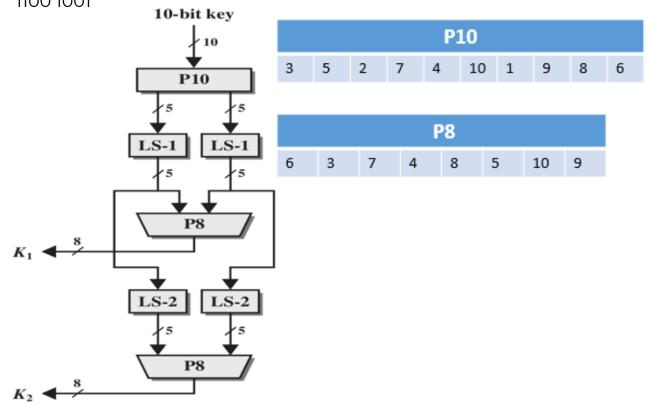

No elements are added or deleted or replaced in the sequence, rather the order in which the elements appear in the sequence is changed.


Confusion


make the relationship between the key and the ciphertext as complex as possible

Diffusion

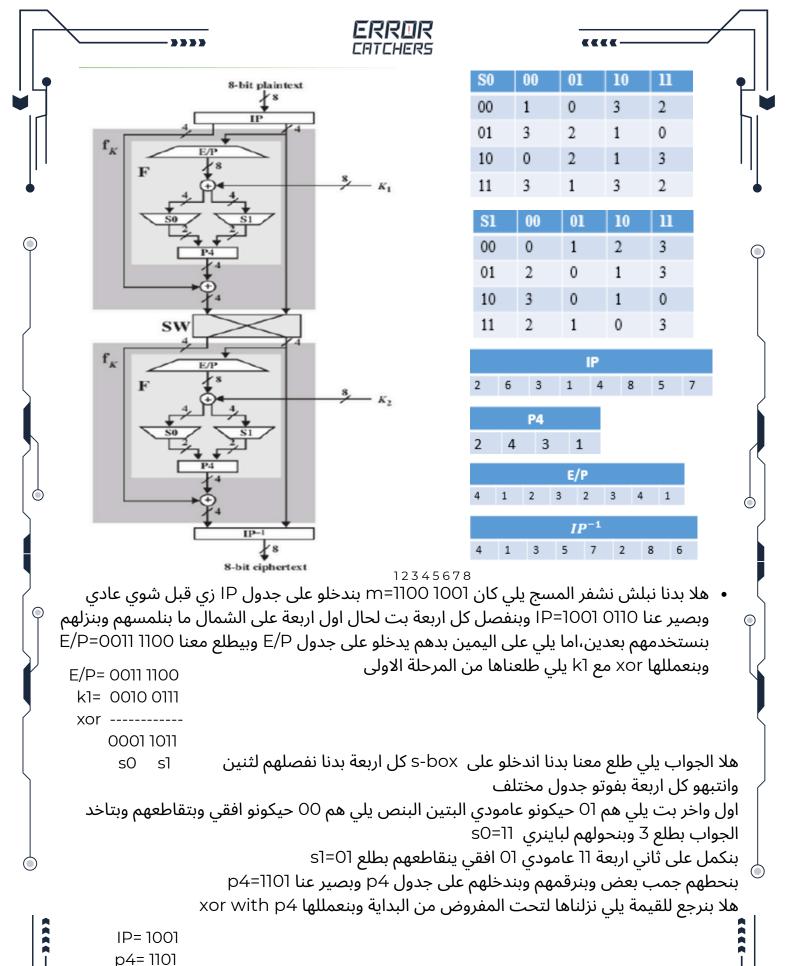
spreads the plaintext statistics over the ciphertext, making the impact of any single bit change in the plaintext highly unpredictable.



 هلا حنبلش باول مثال بال SDES وحيكون في عنا رسمات هدول مش حفظ الدكتورة بتعطيكم ياهم بالامتحان

والدكتورة غالبا ما بتطلب السؤال كامل بس انتو امشو فيه من الصفر عشان تتدربو منيح على نمط السؤال، خطا واحد بدمر السؤال كامل هلا خلينا نبلش

 example: find the cipher text if the key is 00101 10011 and the message is 1100 1001


بنمشي حبه حبه بالاول بنمسك الkey generation) وبنبلش فيه باول مرحلة (key generation) هلا بنمشي على الرسمة اول اشي بدخل 10bits بنفووت على جدول p10 وبنعيد ترتيب المفتاح زي يلي بالجدول

k=00101 10011

بقول الجدول اول اشي بنحط 3 بعدين 5 بعدين 2 بصير عنا 10101 p10=11000

بعدين بنفصل كل خمسة بناخد اخر رقم على الشمال بنحطو يمين بصير 1000 1000 بعدين بندخل هاي على p8=k1=0010 0111 8bits هيك بنكون اوجدنا اول خطوة هاي على p8 نفس قبل شوي بس بتصير 8bits والله على هلا نفسها لp3 بعد ما حركنا اخر بت بنرجع نفصل كل خمسة بس بنحرك اخر بتين كمان على الشمال لليمين بتصير هيك 1010 01100 وبنرجه اندخلها كمان مره على جدول p8 الشمال لليمين بتصير هيك 1010 0110 وبنرجه اندخلها كمان مره على جدول p8=k2=0111 1010

هيك خلصنا اول مرحلة هلا ببلش الحل جد

Your paragraph text

xor -----

هلا وصلنا مرحلة swap بنقدر نقول خلصنا نص المشوار

بنبدل هلا اماكن يلي على اليمين بصير شمال ويلي على الشمال بصير على اليمين بين نص ip اليمين و ناتج xor بصير عنا Olo Olo Ow=Oll وبنرجع نعيد نفس القبل بزبط بس مع المفتاح الثاني يلي طلنا باول مرحلة حنمشي هون اسرع واذا حسيتو انكم ما فهمتو اشي اسالونا

take the left side 0100 and change it depend on E/P = 00101000

E/P xor k2 = 0101 0010

s0=01 s1=01 → 0101

take the result of the s-box and change it depend on p4 = 1100

p4 xor left side of SW = 1010

result of xor change it depend on IP-1 → cipher text = 0110 0001

SDES decryption

اول اشي بنوجد المفاتيح من key generation بزبط زي الencryption (نفس السؤال عشان نثبت انو رح نرجع لنفس المسج)

take the key of 10 bits and inter it in p10 = 11000 10101

left lift bit L=10001 R=01011

now in p8 = 0010 0111 and that is k1

left the L and R two bits more L2 = 00110 R2 = 01101

in p8 again = 0111 1010 and that is k2

هلا بدنا نفوت المرحلة الثانية

هون بالعكس بدل ما اخربط ترتيب الارقام حسب الجدول بالعكس بحطهم وبرتبهم باخد الارقام بالتسلسل 1 بعدين 2 بعدين 3 ...

			II	P ⁻¹			
4	1	3	5	7	2	8	6
0	1	1	Ο	Ο	0	0	1

بنشوف بالجدول ايش قيمة I=1 ايش قيمة O=2 وبنرتبهم هيك IP=1010 0100 R2=0100 هلا بنرفع R2 لفوق وبنرجع نمشي لتحت طبيعي عشان انجيب باقي المعلومات

we enter R2 in E/P=0010 1000

 $E/P \times vor k2 = 0101 0010$

s-box=01 01

p4 = 1100

هلا بنرجعها لفوق عند السواب بنعكس النتائج وبنرفعها 1 = (left side) = L1 = 0110 وبنعيد نفس الخطوات هاى عشان نجيب المسج

SW=0110 0100 swap the answer = 0100 0110 (R0=0110 (part of the ip)) enter R0 in E/P=0011 1100

E/P xor k1 = 0001 1011

s-box=11 01

p4 = 1101

p4 xor IP (left side)= L0 = 1001

IP = 1001 0110 معنا المسج الجدول وبنرتبها ترتيب صح وبطلع معنا المسج 1001 0100 M=1000 وبنلاحظ انو نفس المسج يلى كان بسؤال القبل يعنى حلنا صح 1001 1000

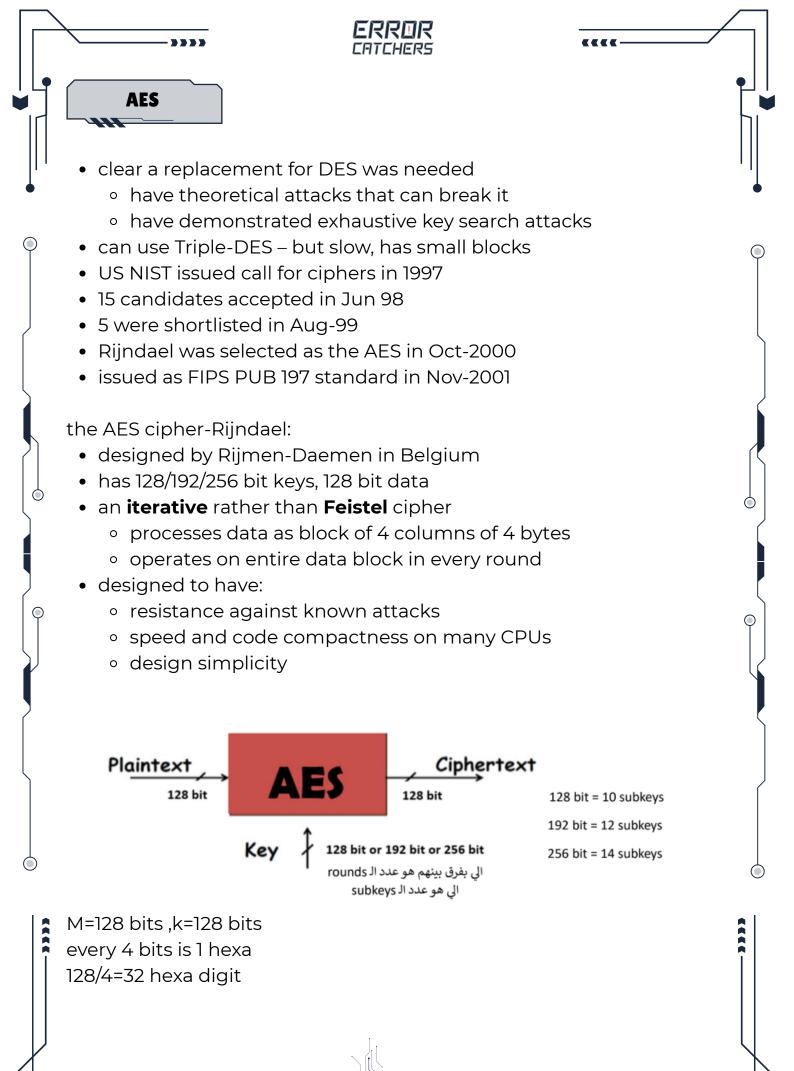
ديرو بالكم عهاد الجدول بتجيب منو اسئلة

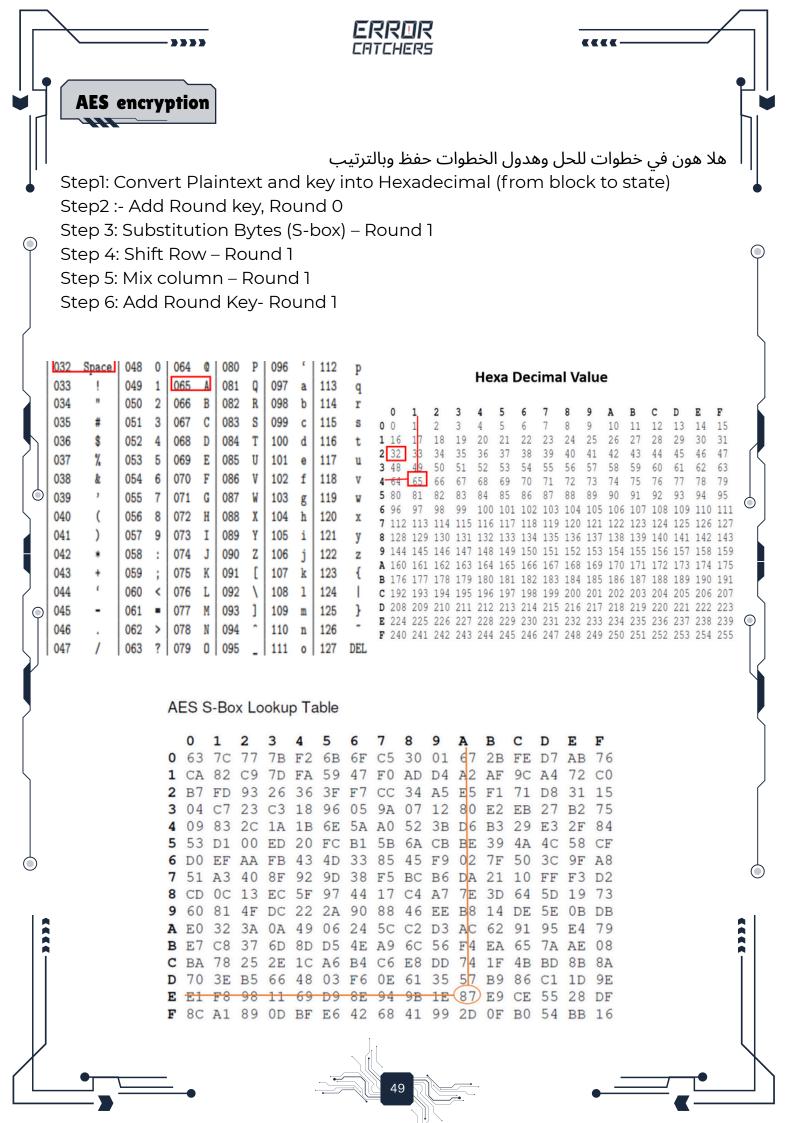
The Difference between DES and Simplified -DES

Parameters	DES	S-DES
M length	64 bits	8 bits
C length	64 bits	8 bits
K length	56 bits	10 bits
Number of Round	16 round	2 Round
Number of Sub Keys	16 keys (48 bits)	2 keys (8 bits)
S-boxes	8 boxes 6 bits -> 4 bits	2 boxes 4 bits -> 2 bits

block cipher design principles: number of rounds:

- •The greater the number of rounds, the more difficult it is to perform cryptanalysis
- •In general, the criterion should be that the number of rounds is chosen so that known cryptanalytic efforts require greater effort than a simple brute-force key search attack
- ·If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than a brute-force key search


Measures of cipher strength:


- 1- SAC: strict avalanche criterion
- •States that any output bit j of an S-box should change with probability 1/2 when any single input bit i is inverted for all i, j

يعني اذا تغير bit واحد بالinput لازم على الاقل تتغير نص الciphertext (بتنهار)

- 2-BIC: bit independence criterion
- •States that output bits j and k should change independently when any single input bit i is inverted for all i, j, and k

هون التغير عشوائي مو شرط اذا غيرنا اشي يتغير نصها

AES encryption

يلا نحل اول سؤال

find the cipher text of m= Hello Students L and the k=Go to the GYM \$? using AES cipher

بنبلش باول خطوة من الخطوات يلي المفروض حفظتوهم بتحكيلنا لازم نحول النص لهيكسا بنحولهم من الصورتين هدول بتعطينا ياهم الدكتورة

اول اشي بنروح على جدول ASCII بنشوف الحرف او الرمز شو رقمو بناخد الرقم وبنروح على جدول الهيكسا بندور على الرقم وبناخد العامود بعدين السطر

н	e	1	-	0		s	t	.	d	e	n	t	s		L
72	101	108	108	111	32	83	116	117	100	101	110	116	115	32	76
48	65	6C	6C	6F	20	53	74	75	64	65	6E	74	73	20	4C

G	0		t	0		т	h	e		G	Y	м		\$?
71	111	32	116	111	32	84	104	101	32	71	89	77	32	3 6	63
47	6F	20	74	6F	20	74	68	65	20	47	59	4D	20	24	3F

هلا بناخد كل اربعة بنحطهم فوق بعض عشان نعمل ماتريكس

Plaintext=
$$\begin{pmatrix} 48 & 6F & 75 & 74 \\ 65 & 20 & 64 & 73 \\ 6C & 53 & 65 & 20 \\ 6C & 74 & 6E & 4C \end{pmatrix}$$

$$Key = \begin{pmatrix}
47 & 6F & 65 & 4D \\
6F & 20 & 20 & 20 \\
20 & 74 & 47 & 24 \\
74 & 68 & 59 & 3F
\end{pmatrix}$$

هيك بنكون خلصنا المرحلة الاولى عنا المرحلة الثانية يلي هي نجيب state matrix هي طويلة بس سهلة بدنا نعمل xor لكل رقمين مع بعض حنحل مع بعض اكم مثال وانتو كملو

48 xor 47 = 0100 1000 xor 0100 0111 = 0000 1111 = 0F

65 xor 6F = 0110 0101 xor 0110 1111 = 0000 1010 = 0A

6C xor 20 = 0110 1100 xor 0010 0000 = 0100 1100 = 4C

State Matrix= $\begin{pmatrix}
0F & 00 & 10 & 39 \\
0A & 00 & 44 & 53 \\
4C & 27 & 22 & 04 \\
18 & 1C & 37 & 73
\end{pmatrix}$

AES encryption

بناخد الجواب وبنروح على الجدول الثالث كل رقم بالماتريكس متكون من منزلتين مثلا اول وحدة OF بناخد الO بنحطها عامودي و F بنحطها افقي وبناخد التقاطع بطلع معنا 76 وبنكمل على كل الارقام وبطلع معنا هيك

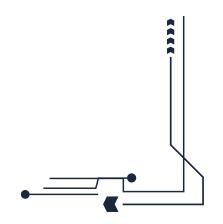
New State Matrix =
$$\begin{pmatrix} 76 & 63 & CA & 12 \\ 67 & 63 & 1B & ED \\ 29 & CC & 93 & F2 \\ AD & 9C & 9A & 8F \end{pmatrix}$$

اما بالنسبة للخطوة الرابعة shift row اول سطر ما بنلمسو ثاني سطر بس اول وحدة بتصير اخر وحدة ثالث سطر بنحرك ثنتين الرابع بنحرك ثلاث وهكذا بتصير عنا هيك

New Shifted State Matrix =
$$\begin{pmatrix} 76 & 63 & CA & 12 \\ 63 & 1B & ED & 67 \\ 93 & F2 & 29 & CC \\ 8F & AD & 9C & 9A \end{pmatrix}$$

والخطوة الخامسة mix columns في عنا ماتريكس حفظ بنضربها باخر ماتريكس طلعت معنا السطر بالعامود والضرب هون حفلة مرتبة

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} * \begin{pmatrix} 76 & 63 & CA & 12 \\ 63 & 1B & ED & 67 \\ 93 & F2 & 29 & CC \\ 8F & AD & 9C & 9A \end{pmatrix}$$


طريقة الضرب ححل بس هاي والباقي عليكم نفس الطريقة كلهم بس قبل ما ابلش فيها لازم نراجع شغلة سريعة بالضرب

لما نضرب بواحد بضل الرقم نفسو

لما نضرب بثنين بنفرط اول اشي لباينري وبنطلع على اقصى اليسار للرقم اذا كان O بننقلو من اقصى اليسار الى اقصى اليمين

> اما اذا كان ٦ بنمحي الواحد وبنحط صفر باقصى اليمين وبنعمملها xor with ۱B ولما نضرب بثلاث بنفكها ضرب اثنين وضرب واحد وبنرجع للطريقة القبل وبنكمل

AES encryption

هاد كلو بكون بس اول نقطة بالناتج (3 * 76) xor (63 * 3) xor (93 * 1) xor (8F * 1) هاد كلو بكون بس اول نقطة بالناتج

76 * 2 = **0**111 0110 * 2 = 1110 110**0**

63 * 3 = (63*2) xor (63*1) = 0110 0011 *2 xor 0110 0011*1 = 11000110 xor 0110 0011 = 1010 0101

93 * 1 = 1001 0011

8F * 1 = 1000 1111

هلا كل الاجوبة يلى طلعت معنا بنعمللها xor مع بعض

1110 1100 xor 1010 0101 xor 1001 0011 xor 1000 1111 = 0101 0101 = 55

هيك بطلع الجواب النهائي

وبالمناسبة الدكتورة ما بتطلب كل هاد بالعادة بس بتطلب خطوة او خطوتين

SAES key expansion

يلا نبلش دغري والحل هون بعتمد على الصور يلي استخدمناهم فوق

k= Thats my Kung Fu

k in hex = = 54 68 61 74 73 20 6D 79 20 4B 75 6E 67 20 46 75 (128bit)

حولناهم لهيكسا زي فوق بنشوف الجدول الاول شو مقابل كل حرف رقم بعدين بنقاطلعهم على الجدول الثاني

w0= 54 68 61 74

w1= 73 20 6D 79

w2= 20 4B 75 6E

w3= 67 20 46 75

Round	Constant (RCon)	Round	Constant (RCon)
1	(<u>01</u> 00 00 00) ₁₆	6	(<u>20</u> 00 00 00) ₁₆
2	(<u>02</u> 00 00 00) ₁₆	7	(<u>40</u> 00 00 00) ₁₆
3	(<u>04</u> 00 00 00) ₁₆	8	(<u>80</u> 00 00 00) ₁₆
4	(<u>08</u> 00 00 00) ₁₆	9	(<u>1B</u> 00 00 00) ₁₆
5	(<u>10</u> 00 00 00) ₁₆	10	(<u>36</u> 00 00 00) ₁₆

قسمنا كل اربعة لword كل وحدة بتتكون من (bit 32) حنستخدم كل جزء بمعادلة مختلفة عشان نوجد باقي الsubkeys عددهم 10 لان 128 key فكل اربع مقاطع حنحطهم بمفتاح مختلف

k1= w4 w5 w6 w7

k2 = w8 w9 w10 w11

وهكذااا

عشان انبلش هون برضو عنا قوانین ولازم نحفظهم عشان نوجد کل word اول word بکل key هیك بنوجدو

1. circular byte left shift of w[3]: (20; 46; 75; 67)

بنخلي اول رقم اخر رقم

2. Byte Substitution (S-Box): (B7; 5A; 9D; 85)

بنروح على الجدول الثالث يلي هو AES s-box وبنقاطع 20 بطلع الجواب B7 وهكذا

3. Adding round constant (01; 00; 00) gives: g(w[3]) = (B6; 5A; 9D; 85)

هون حقلكم طريقة سريعة اول رقمين الخانة الثانية بتطرحو منها واحد والباقي بنزل عادي

 $w[4] = w[0] \oplus g(w[3]) = (E2; 32; FC; F1)$

بعدين بنعمل xor الجواب مع يلي بتقابلها بالمفتاح القبل وهيك طلعنا اول word

اما الثلاث الباقيين فهم بس بنعمل xor مع القبلها ويلي بتقابلها بالمفتاح يلي قبلها يعني

 $w[5] = w[4] \oplus w[1] = (91; 12; 91; 88)$

w[6] = w[5] ⊕ w[2] = (B1; 59;E4;E6)

 $w[7] = w[6] \oplus w[3] = (D6; 79;A2; 93)$

first round key: k2 = E2 32 FC F1 91 12 91 88 B1 59 E4 E6 D6 79 A2 93

) اما هلا نوجد k2 مهمممم اجا بالفاينل

k2 = w8 w9 w10 w11

w8 = G(w7) xor w4

w9 = w8 xor w5

w10 = w9 xor w6

w11 = w10 xor w7

1. circular byte left shift of w[7]: (79 A2 93 D6)

زي اول مفتاح ما اختلف اشي اول رقم بصير اخر رقم

2. Byte Substitution (S-Box): (B6 3A DC F6)

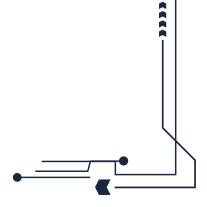
بنروح على جدول وبنقاطع الارقام

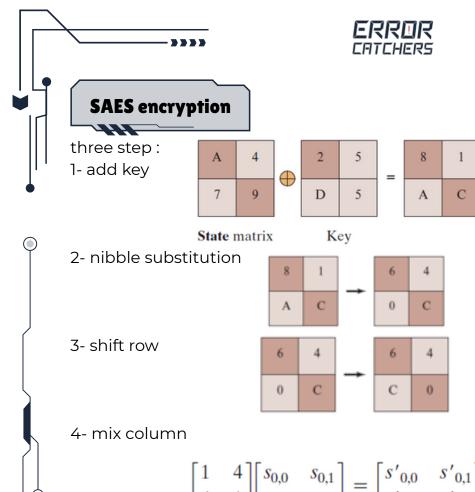
3. Adding round constant (02; 00; 00) gives: g(w[7]) = (B4; 5A; 9D; 85)

هون نفس الاشي بس عشان صرنا بالدورة الثانية بنطرح اثنين بدل واحد

 $w[8] = w[4] \oplus g(w[7]) = (56 68 61 74):$

 $w[9] = w[8] \oplus w[5] = (C7 7A FO FC),$


 $w[10] = w[9] \oplus w[6] = (76\ 2314\ 1A),$


w[11] = w[10] ⊕ w[7] = (AO 5A B6 89)

second roundkey: 56 68 61 74 C7 7A F0 FC 76 23 14 1A A0 5A B6 89

$$\begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} \\ s_{1,0} & s_{1,1} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} \\ s'_{1,0} & s'_{1,1} \end{bmatrix}$$

let know that the first sub key is 6F 32 determine the second sub key

W0 = 6F

w1 = 32

w2 = x0 xor 80 xor subNib(RotNib(w1))

w2 = 0110 1111 xor 1000 0000 xor subNib(RotNib(0011 0010))

هاد القانون حفظ كمان

عوضنا هون القيم

بنعمل xor عادي

w2 = 0110 1111 xor 1000 0000 xor subNib(0010 0011)

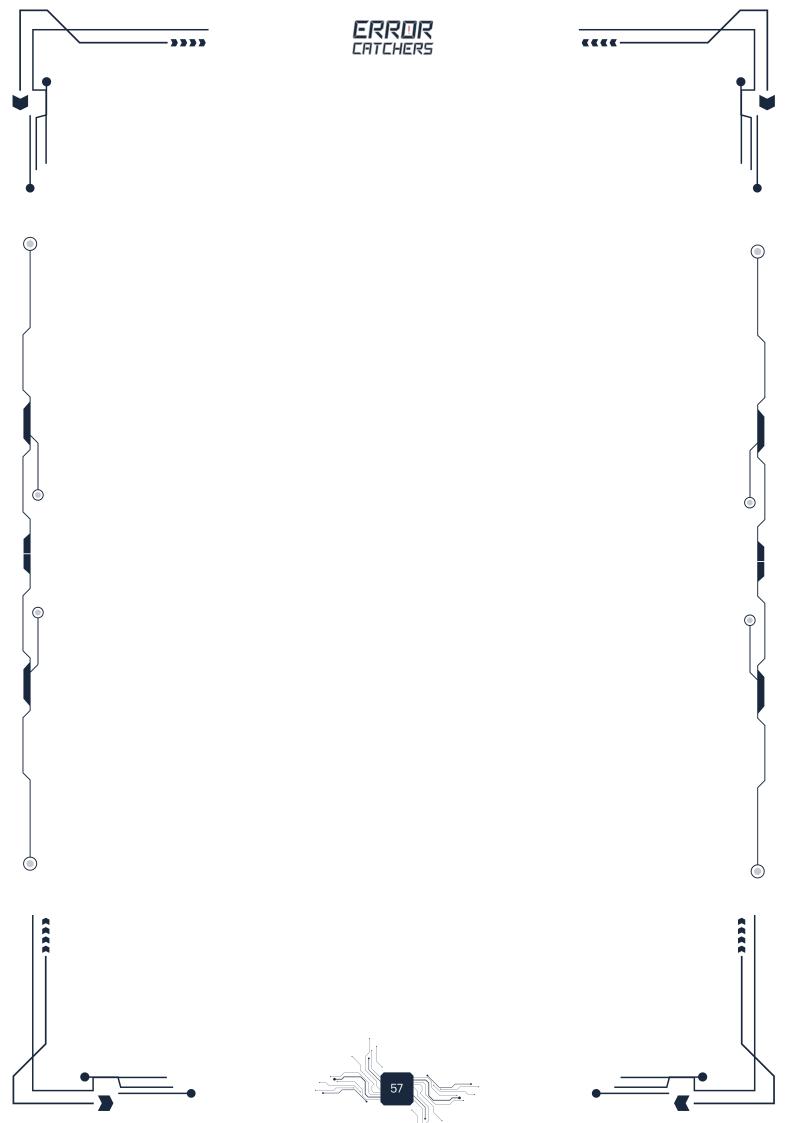
اول اشي RotNib نقلب اليمين يسار واليسار يمين

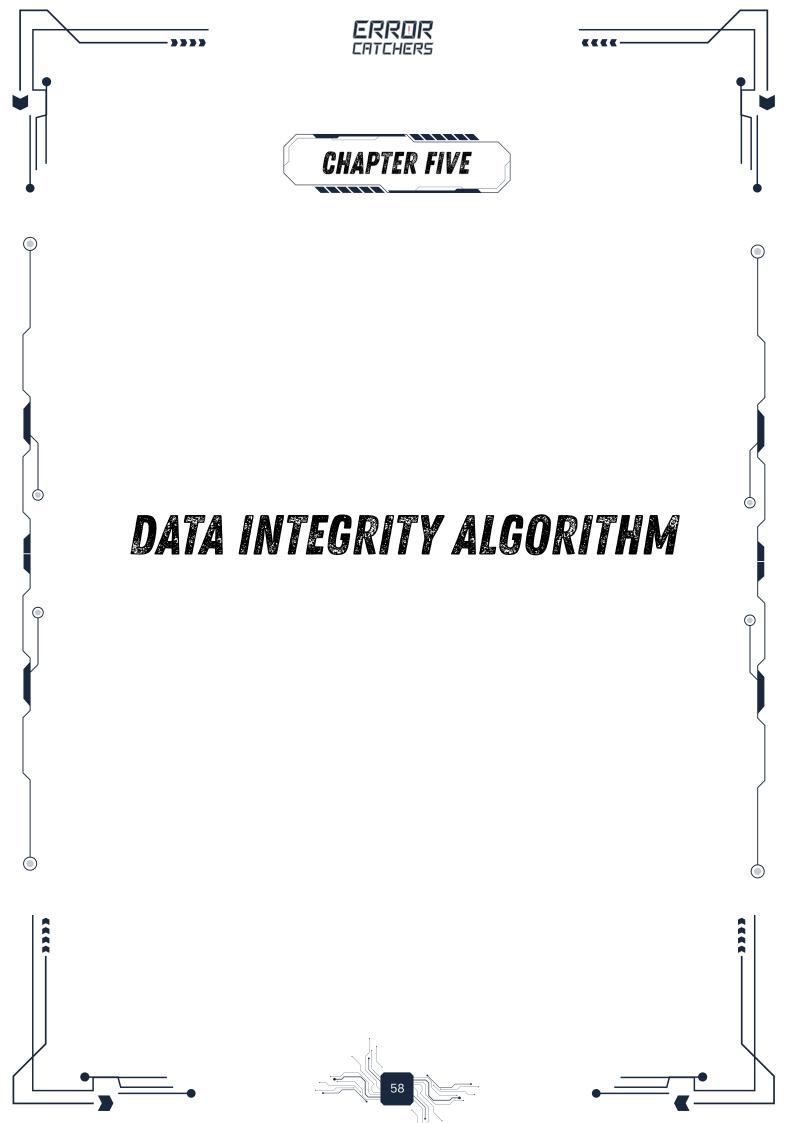
w2 = 0110 1111 xor 1000 0000 xor 1010 1011

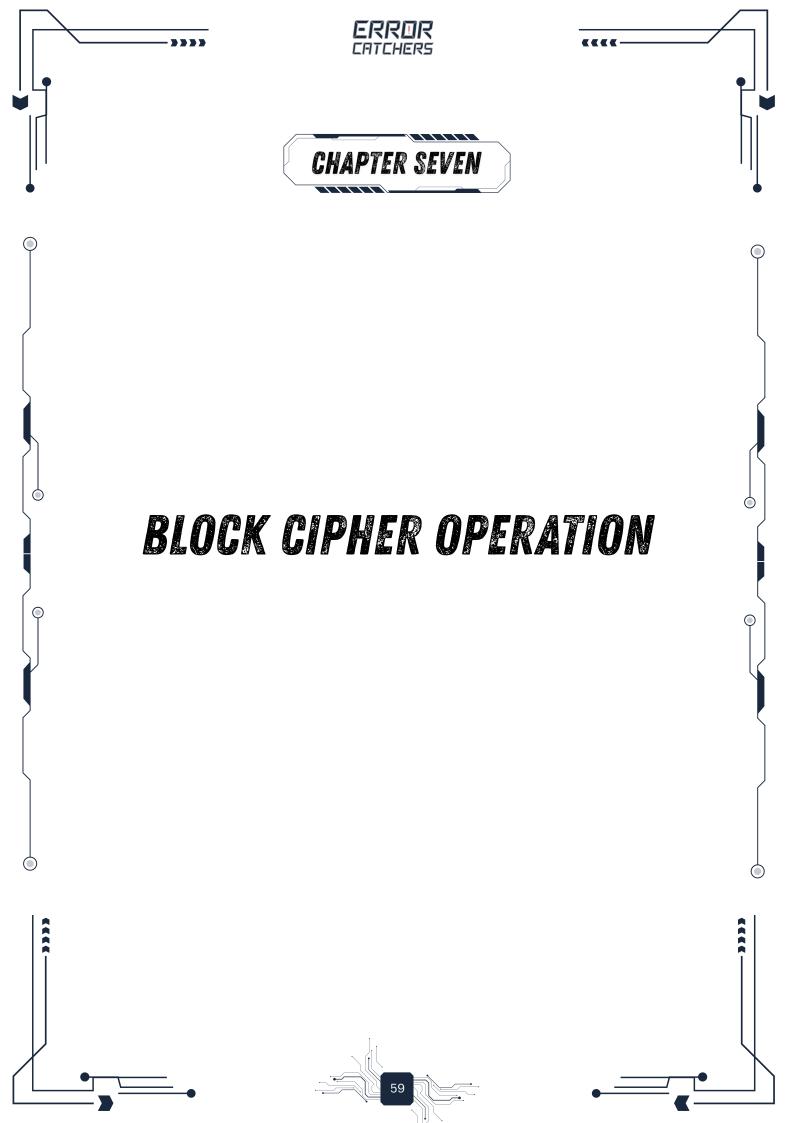
هون SubNib من الجدول كل اربع ارقام قبالها ارقام

w2 = 0100 0100

w3 = w2 xor w1


w3 = 0100 0100 xor 0011 0010


w3 = 0111 0110


S-box(nibble)	nibble	S-box(nibble)
1001	1000	0110
0100	1001	0010
1010	1010	0000
1011	1011	0011
1101	1100	1100
0001	1101	1110
1000	1110	1111
0101	1111	0111
	1001 0100 1010 1011 1101 0001 1000	1001 1000 0100 1001 1010 1010 1011 1011 1101 1100 0001 1101 1000 1110

